
Creating a Service-Oriented
Architecture (SOA) requires
more than simply exposing a

collection of services on the network.
That’s widely accepted, but what does it
take to have an SOA and not just a cha-
otic collection of incoherent services?
Here are 10 key factors:

1. Explicit human-readable contract:
All services in a true SOA must have a
specification document written in busi-
ness analyst-level English that describes
every operation, request parameter, and
response value involved in every ser-
vice. This ensures that people through-
out the enterprise can understand the
value of the service without having to
be too technical or having to contact the
service owners. Such a contract isn’t
that daunting. It takes only a few sen-
tences to describe any given element, so
even a complex service with a dozen
operations, each with a dozen input and
output values, can typically be described

in a few hundred sentences. This con-
tract doesn’t include business data defi-
nitions (described later).

2. Explicit system-readable contract:
The parts of the human-readable con-
tract important for system processing
can be converted to languages comput-
ers understand. Most companies use
Web Service technology as their service
implementation of choice. Web Services
must always come with a Web Services
Description Language (WSDL) contract
outlining the service operation, and all
data moved by the service must have an
associated XML schema definition.
XML schema is a language that defines
how data should be structured. This lets
computers ensure that any given body
of data is structured properly. In partic-
ular, it lets computers programmatically
enforce a fairly significant amount of
the human-readable contract.

3. Business data definitions: Besides

the operations, parameters, and return
values that facilitate operation of the
service itself, all the business data a
service exposes or uses also must be
defined. This is one of the most diffi-
cult yet important characteristics of an
SOA to achieve. It’s difficult because it
requires that the organization actually
have a formalized set of definitions for
its most important data values—sur-
prisingly few organizations do. It’s
important because it eliminates the
need to rely on the expertise at the sys-
tem of record, and it gives service call-
ers confidence in the data provided.
For example, in the insurance industry,
premium is earned using several dif-
ferent algorithms, each of which can
produce legitimately different results.
If a service publishes “EarnedPremium”
with no reference to algorithm used to
earn the premium, the value of that
field is, at best, reduced, and, at worst,
causes the validity of the data to be
called into question when it fails to

5 2  •   B u s i n e s s I n t e g r a t i o n J o u r n a l   •  S e p t e m b e r / O c t o b e r 2 0 0 6

Service-
Oriented

Architecture
vs.

Service
Chaos

By James Madison

balance against another value named
“EarnedPremium” exposed by another
service.

4. Enterprise functionality: Individual
systems are generally built with the
needs of the individual business areas
they support in mind. This generates
systems focused on solving problems as
seen by one small area of the company.
Unless the value of using this function-
ality in multiple systems across the
enterprise can be clearly defined, it
shouldn’t be turned into a service. If
such enterprise value does exist, the
service that exposes the functionality
must also provide a set of input opera-
tions that allow the calling system to
indicate what type of specialized behav-
iors it needs and a set of output indica-
tors that allow the calling system to
understand what the service actually
did. For example, inputs might be
whether a timeout should occur and
whether partial results should be

returned on time out, and an output
might be the percentage complete for
the partial results. Such inputs and out-
puts give the service everything it needs
to be controlled by and communicate
with the calling system and maximizes
its ability to meet the slightly varying
needs of systems across the enterprise.
Naturally, these inputs and outputs
would be precisely defined in the con-
tract, as discussed.

5. Implementation decoupling:
Defining a clear contract and creating
functionality that’s meaningful to the
enterprise are part of the larger theme
of making the service capable of deliv-
ering value in a manner that’s well-
defined and decoupled from any specific
context. The well-defined part is pri-
marily concerned with what callers see,
but the context decoupling must propa-
gate down through every layer of imple-
mentation of the service. Coupling
includes such things as:

•	Modifying data in a database that’s
also used by a system not related to the
service

•	Using the local system time to gener-
ate timestamps that are seen by callers
in other time zones

•	Using rules engines that are under
control of an area other than those
accountable for the service contract.

	 For example, insurance companies
have been printing checks as part of
claim processing for years, and printing
checks requires only a few input fields,
so it would seem a good candidate to
turn into a service when another depart-
ment determines they need check print-
ing functionality. However, the check
printing code was based on the assump-
tion that checks would be printed only
as part of a claim, so the code references
the claim number in many different
places. This coupling requires either
generating dummy claim numbers and
entries in several tables in the claim
database, changing the otherwise stable
code, or creating an entirely new check
printing service implementation that’s
fully decoupled.

6. Operations management: Exposing
system operations as services generally
results in little or no information about
how the service is then used, how well
it’s performing, or similar operational
management characteristics. At best,
the system that exposed the service will
have some ability to track this type of
information, but having individual sys-
tems in possession of this information
causes it to be scattered around the
enterprise, and getting to such informa-
tion will be difficult at best. An enter-
prise that has an extreme propensity for
service chaos may even consider expos-
ing operational information as yet
another service. By now, the alert reader
knows that’s not the design path to fol-
low. Instead, an explicit service manage-
ment architecture must be used to
monitor the services, facilitate common
operational control, and provide met-
rics and feedback on operational effi-
ciency. This can be through a centralized
platform, by deploying monitoring
agents to the service platforms, or sev-
eral other designs.

7. Role-based security strategy: Getting
services on the wire is easy. It takes
about two hours to set up the initial
infrastructure on any developer’s desk-
top, and two minutes to publish any
existing object as a service. It then takes

B u s i n e s s I n t e g r a t i o n J o u r n a l   •  S e p t e m b e r / O c t o b e r 2 0 0 6   •   5 3

any potential caller two minutes to gen-
erate the code to call it. Building out a
full-scale production environment nat-
urally requires much more work, but
the service development itself is light-
ning fast. It’s precisely this amazing level
of ease that’s causing the gold rush to
the Wild West of service chaos. But put-
ting services on the wire without a care-
ful security design can be dangerous
because services can generate informa-
tion that has legal constraints or finan-
cial costs associated with it. For example,
in the insurance industry, Motor Vehicle
Reports (MVRs) are ordered on cus-
tomers. MVRs return driver informa-
tion that has state and federal privacy

laws associated with it, and each report
can cost up to $15. Just publishing an
MVR service for anyone to call can get
an organization into legal and financial
troubles with minimal technical effort.
Preventing this requires a security
design based on the nature of the user
or system calling the service, and keep-
ing the security design under control
requires basing it on a collection of roles
that reflect the nature of the business
processing.

8. Traceability: Services that are called
can call other services, and so on,
through more and more layers of depth
until one service call from system A to

system B results in service calls to C,
D, E and possibly many others. This
complex interdependency of systems
can begin to couple systems to each
other in a way so brittle that the orga-
nization cannot touch this frightening
web of services for fear of breaking
any number of other systems.
Ironically, the theoretical loose cou-
pling that’s sold as one of SOA’s pri-
mary values becomes completely
absent in practice! Preventing this gets
into some of the more esoteric discus-
sions around SOA, such as hub-and-
spoke design, the Enterprise Service
Bus (ESB), mediation layers, etc. But
as a quickly deliverable, easily man-
aged minimum, all services should
implement basic traceability by requir-
ing that all calls include system identi-
fication in the call header. If a call is
then made from system A that propa-
gates to system E, this can be traced by
the management platform.

9. Orchestration enablement: Once
created, services will be used as groups
to achieve higher levels of functionality
than individual services can achieve
alone. Bringing many services together
in this way is called orchestration, and
it often requires addressing issues that
involve concerns beyond just making a
call and getting a response. Services
may need to ensure their work is done
in an all-or-nothing manner with other
services such as two banking services
ensuring that a withdrawal from one
and a deposit to the other occurs as a
complete unit or not at all. Services

5 4   •   B u s i n e s s I n t e g r a t i o n J o u r n a l   •  S e p t e m b e r / O c t o b e r 2 0 0 6

Business
•	 Require that each service have a contract that defines its operations

and data in meaningful business terms.
•	 Watch for opportunities to implement services that are of an

enterprise nature and that can be orchestrated into larger, more
meaningful business flows.

•	 Plan for the extra time needed to produce functionality as a service
vs. building the same functionality in a siloed application.

Technology
•	 Write the Web Services Description Language (WSDL) first and then

build the system around it; this repeatedly pays off, since many
tools can automatically generate functionality just by consuming
good WSDL.

•	 Create a centralized platform that supports functionality that
shouldn’t or can’t be left entirely to individual services such as
security, traceability, and operations monitoring.

Figure 2: The Chaos That Evolves as More Clients and Services Are Arbitrarily Added

Figure 1: Services Exposed and Called With No Real Architecture

may need to communicate in a manner
that guarantees messages will eventu-
ally be delivered even if the receiving
service is currently down such as when
automatically ordering supplies from a
vendor whose systems aren’t always
available. Services may benefit from
interacting with human-driven busi-
ness processes that take hours or days
to complete such as getting a human
underwriter review for an insurance
quote when the automated rules trig-
ger a red flag. Essentially, the under-
writer can be made to look like a
service, but his latency has technical
implications that must be effectively
addressed. These and other orchestra-
tion functionalities can become some-
what complex and may require
specialized software, but they offer
value well beyond that provided by the
paradigm of the basic request/response
exchange with a single service.

10. Formalized communication:
Services do no good if nobody knows

about them. Every element just dis-
cussed must be packaged into a coher-
ent body of communication and
training and presented to anyone in
the organization who could benefit
from the services. If done right, that’s a
long list of people. Such a body of
communication won’t be one-size-fits-
all. The level of detail and complexity
of the communication will likely
require customization to at least four
levels: technical/implementation, busi-
ness analyst, customer, and manage-
ment. For example, geographic
operations (e.g., the distance of a house
from a flood area, the count of sales
outlets within 15 miles, etc.) require a
set of services whose functionality is
fairly technical. The services make
sense to the developers who build
against these services, but they make
little sense to customers because the
services are too technical. When the
operations of those services are
abstracted to a more conceptual level,
the descriptions remain accurate, yet

make much more sense to a customer.
Thus, the content of a presentation on
geographic services will vary quite
widely, depending on whether the
audience is technically or business-
focused.
	 Figure 1 shows a single client call-
ing several services. There may be
some type of contracted behavior, truly
reusable functionality, smooth orches-
tration, meaningful operational man-
agement, etc.—or maybe not. There’s
really no way to tell. Figure 2 shows
what happens when this lack of archi-
tecture grows. The chaos becomes
explosive. Figure 3 shows an entirely
different approach. With the same cli-
ent and same services, several key ele-
ments of enterprise value have been
added so it’s clear to the client, servic-
es, and organization precisely what’s
happening. Figure 4 shows that grow-
ing this environment to full enterprise
scale is manageable with effective SOA
design.
	 This list of 10 key points is by no
means exhaustive, nor is it unique.
Differing needs of organizations and
differing styles among the architectural
teams building the SOA will produce
different specific architectural consider-
ations. What will be consistent, howev-
er, is the need to plan for and build out
elements of an SOA that are focused on
doing far more than just exposing ser-
vices. All this activity will require some
initial effort, but it will require far less
effort than trying to control service
chaos. bij

About the Author
James Madison is an information
architect who designs data
services at a financial services
company.
e-mail: madjim@bigfoot.com

B u s i n e s s I n t e g r a t i o n J o u r n a l   •  S e p t e m b e r / O c t o b e r 2 0 0 6   •   5 5

Figure 3: Services in a Well-Designed Architecture

Figure 4: Manageable Growth of Enterprise Functionality as a Result of Implementing SOA

