
0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E 	 March/April 2010 I E E E S o f t w a r e � 41

focus

requires an architect who understands agile de-
velopment, interacts with the team at well-defined
points, influences them using critical skills easily
adapted from architectural experience with other
approaches, and applies architectural functions
that are independent of project methodology.

Architectural Interaction Points
Figure 1 shows a simplified hybrid of scrum,1 Ex-
treme Programming,2 and sequential project man-
agement that I’ve found effective for guiding archi-
tectural work on 14 agile projects over the last eight
years. Table 1 briefly describes Figure 1’s elements;
the architectural functions are ones an architect
typically performs on projects, although the list isn’t
exhaustive. Table 2 shows how architectural func-
tions intersect with interaction points and an ar-
chitect’s main concerns at that intersection. Taken
together, the three categories and their four items
create a framework useful for understanding and
guiding agile architecture that’s extensible by add-
ing more categories or items on the basis of other
priorities or preferences.

Up-Front Planning
Each architectural function begins in an agile proj-
ect with up-front planning, much as it does in any
project, regardless of methodology. The architect

■■ makes major hardware and software decisions,
mostly by using existing corporate standards,
perhaps by lining up proofs-of-concept for new
products;

■■ establishes important design patterns at broad3
and detailed4 levels;

■■ identifies large opportunities for component or
service reuse;

■■ generates high-level diagrams;
■■ outlines quality attributes,5 both technical and
business, and baselines their trade-offs;6 and

■■ establishes communication channels by meet-
ing with stakeholders to understand their con-
cerns and share the general technical direction
with them.

Although much of this is similar to the activities
of a nonagile approach, up-front architectural work

A gile development starts to build before the outcome is fully understood, ad-
justs designs and plans as empirical knowledge is gained while building, trusts
the judgment of those closest to the problem, and encourages continual col-
laboration with the ultimate consumers. Architecture establishes a technol-

ogy stack, creates design patterns, enhances quality attributes, and communicates to all
interested parties. The combination of these two spaces is agile architecture—an approach
that uses agile techniques to drive toward good architecture. Successful agile architecture

Architects can bring
agile and architecture
practices together
to pragmatically
balance business and
architectural priorities
while delivering
both with agility.

James Madison

Agile–Architecture
Interactions

a g i l e and ar c h i t e c t ur e

42	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

with agile development includes a subtle but impor-
tant difference. The architectural direction should
include a range of options rather than a specific so-
lution. A looser set of architectural possibilities is
acceptable based on the agile assumption that the

empirical knowledge gathered by all participants
while building the system will make better options
more evident.7 An architect does well to never lock
in a solution too early, of course, but avoiding this
trap is particularly valuable with agile development.
Agile’s use of iterations, construction of working
software, and encouragement of collaboration pro-
duces a feedback loop that provides tremendous op-
portunity for all participants to find better solutions
later that they couldn’t have understood sooner.8

For example, on a data warehouse project, the
question arose of whether to feed data directly to
another area or to build an intermediate data mart.
A direct feed was more complex, resulting in lower
maintainability and operational efficiency. How-
ever, a data mart used more space, resulting in
higher cost for the life of the system. The architects
observed that either option could meet the busi-
ness objectives, that we couldn’t determine the bet-
ter design, and that we had confidence in the team
to make the right decision within the architectural
bounds. As the project executed, the answer be-
came self-evident, the team quantified it nicely, and
the architects signed off on it. Defining ranges and
bounds is more agile than stating specific solutions,
but the architects must still define the ranges and
bounds up front.

Storyboarding and Backlogs
Up-front planning moves quickly into storyboard-
ing and building the product/sprint backlogs, with
the architect being a key stakeholder. The architect
must attend the early storyboarding sessions and
contribute architectural user stories that have sig-

Enterprise architecture4 Architecture backlog

Product owner2 Sprintable form

Architect

Story-
boarding

1

2
Up-front
planning

1
Working
software

4

Sprint

3

Quality attributes2

Design patterns3

Hardware and software stack4

1 Communication

3

Figure 1. A hybrid framework for agile architecture work. The
architect’s involvement during project execution helps achieve
project objectives. Table 1 further explains the framework’s elements:
interaction points (green), critical skills (gold), and architectural
functions (purple).

Table 1
Explanation of the elements in a hybrid framework

Category Item Description

Interaction
point

1. Up-front planning Setting the architectural direction in much the same way as sequential projects

2. Storyboarding Structuring the business need and architectural work, and getting everyone on board

3. Sprint Building the functionality as part of the team when direct participation is valuable

4. Working software Reviewing what’s actually delivered to measure the architectural state

Critical
skill

1. Sprintable form Breaking architectural work into small, measurable units

2. Product owner Quantifying the architecture in terms of clear business value

3. Architecture backlog Tracking architectural concerns and balancing them with business priorities

4. Enterprise architecture Knowing the larger architectural picture and using each project to advance it

Architectural
function

1. Communication Keeping all stakeholders informed about the architecture’s value and state

2. Quality attributes Measuring maintainability, scalability, extensibility, and similar “-ilities”

3. Design patterns Outlining the structures that give form to implementation work

4. Hardware and software stack Choosing appropriate hardware and software for the project

	 March/April 2010 I E E E S o f t w a r e � 43

nificant foundational or directional influence. He
or she must also attend the ongoing storyboarding
between sprints to contribute architectural user
stories that fine-tune the architecture or correct un-
desirable deviations. The architect must work with
the product owner to prioritize these stories with
the business user stories and build them in conjunc-
tion with business functionality in sprints.

The architect often becomes a driving force in
storyboarding on the basis of his or her compre-
hensive knowledge of both the business and tech-
nology. I’ve found that a good architect is well posi-
tioned to draw requirements out of the business in
storyboard form, explain technical constraints to
the business, and restate business needs in technical
terms for the team. As the architect does this, he
or she can help all parties succeed while smoothly
integrating architectural user stories into the story-
board and product backlogs.

For example, a data-warehousing program
sought to achieve a high level of enterprise data in-
tegration. The architects advocated using dimen-
sional modeling as the primary approach. They
also advocated using the bus matrix as the primary
tool for organizing data work because the bus ma-
trix facilitated problem decomposition and work
iteration.9 The business (and most of the techni-

cal community) had never used the bus matrix, so
the architects had to provide extensive facilitation
in the first storyboarding session. By the third ses-
sion, the product owners came in with their stories
printed out in bus matrix form. By the fifth session,
the team expressed concern that success was being
judged only by the bus matrix components. So, we
had to back off a bit and emphasize the value of
less visible work such as reusable code components,
solving data quality issues, and getting new tools to
work. The approach had clearly gathered its own
momentum, but the architects’ early facilitation got
it started.

Sprint Participation
Writing code is a powerful way to ensure that the
architect fully understands the architecture being
produced,10 but we’ll assume that the organiza-
tion derives high value from spreading architects
around, reducing their ability to be fully hands-on.
Fortunately, agile offers a solution—trust the team.
This requires the architect to collaborate heavily
with the team during the sprint, understanding the
objectives, and helping with challenging design is-
sues.11 To handle multiple projects in this way, the
architect must leave many of the specifics to the
team. As long as the architect’s review of the work-

Table 2
Applying architectural functions at agile interaction points

Architectural
function

Interaction point

Up-front planning Storyboarding Sprint Working software

Communication ■■ Understand business
objectives.

■■ Get input from the techni-
cal team.

■■ Communicate the general
direction to everyone.

■■ Actively facilitate story-
boarding sessions.

■■ Work architectural user
stories into the backlog,
particularly the types in
the three cells immediately
below:

■■ Attend daily stand-ups.
■■ Build functionality as a
means of gaining under-
standing.

■■ Mentor and assist as
expertise allows.

■■ Attend the sprint review.
■■ Review documentation.
■■ Advocate refactoring for
architectural value with the
team and product owner.

Quality
attributes

■■ Set approximate target
ranges for attributes.

■■ Establish which attributes
dominate in trade-offs.

■■ Add stories to improve
specific attributes, includ-
ing refactoring.

■■ Build attributes into code,
explicitly and as a norm for
build work.

■■ Assist in designing or
building to improve attri-
butes.

■■ Verify that the delivered
solution meets target
ranges.

■■ Adjust target ranges if
build work indicates a need
for adjustment.

Design
patterns

■■ Choose important design
patterns.

■■ Outline general interac-
tions among significant
patterns.

■■ Add stories to build design
patterns, including refac-
toring.

■■ Solve for detailed design
patterns.

■■ Assist in building the most
critical design patterns.

■■ Verify that the delivered
design patterns are valid.

■■ Adjust design patterns as
build work indicates.

Hardware and
software stack

■■ Reuse the corporate stack.
■■ Prototype early to verify
assumptions.

■■ Plan carefully; hardware
and software changes are
inherently nonagile.

■■ Add stories designed to
validate hardware and
software.

■■ Validate hardware and
software selection in early
sprints.

■■ Change early and quickly if
stack needs adjusting.

■■ Verify hardware and
software by continually
delivering business func-
tionality on it.

■■ Deploy to other environ-
ments routinely.

44	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

ing software continues to indicate high architec-
tural quality, the architect can leave the details to
the team members, confident that their combined
technical knowledge and proximity to the work
will keep things on track. That said, engaging in
hands-on implementation can become justified
when sprints seem to be going off track, architec-
turally and otherwise. At such times, the architect
becomes a hands-on contributor, collocated with
the team, with full accountability to the team for
the completion of his or her assigned work.

For example, there’s a long-standing question
in data warehouse architecture about when to use
normalized versus dimensional modeling and to
what degree.12 The architects addressed this dis-
pute early in a particular agile data warehouse
project by recommending that both be done in
their fullest form for maximum functionality. Af-
ter several sprints, the project velocity wasn’t track-
ing to the required timeline—a common condition
regardless of methodology. To see whether archi-
tectural changes could help speed up the project, I
participated in a hands-on role for the first time in
the fourth sprint. On the basis of both the hands-
on work and spirited input from seven experts on
two teams, it quickly became apparent that moving
all the data through a normalized model to land it
in a dimensional model wasn’t necessary to meet
the business objectives (for this particular project,
not necessarily in general). We’d been planning the
normalized layer for over a year; then on the basis
of this new insight, we dropped it in under 30 days.
Extensive discussions with management and archi-
tectural governance were needed, but the change
was made by the next sprint and gave the project a
solid velocity increase.

Working Software
After each sprint, the team and product owner
must present the working software in a for-
mal sprint review so that all stakeholders, one of
whom is the architect, can observe overall prog-
ress and provide feedback. Sprint reviews tend to
last only a few hours with many stakeholders vy-
ing for conversation time, so the architect should
start reviewing the working software several days
before the official review. It might still have some
work-in-progress aspects, but with a formal sprint
end approaching, the software should be stable
enough for a meaningful review. Well-run agile
projects require the iterative delivery of documen-
tation with the working software, including archi-
tectural documentation—undocumented code and
system functionality shouldn’t be considered work-
ing software. Reviewing this documentation as it

emerges from each sprint is a useful form of archi-
tectural review. What’s more important, the archi-
tect should review the working software by getting
deep into the code and system functionality.

For example, over the past decade, I’ve accumu-
lated several hundred scripts that automate the ar-
chitectural analysis of a data warehouse platform
or data-processing application. When my teams re-
lease working software, I run my scripts. Within
minutes, I have reports that thoroughly describe
the health of the platform, schema, data model,
data quality, and other aspects of the data archi-
tecture. Any issues discovered can be addressed
in the current sprint or queued in the appropriate
backlog. To help the process scale, I offer the teams
my scripts so that they can perform automated ar-
chitectural inspection without me. Inevitably, they
have some valuable script that checks something
important that I missed. Together we grow the sys-
tem’s architectural quality as we try to one-up each
other with the slickest way to automate architec-
tural inspection.

An Agile Architect’s Skills
Jumping into these interaction points as an archi-
tect can be a turbulent experience. Everyone’s busy,
developers might view architects with skepticism,
and there always seems to be a business priority
that justifies bypassing good architecture. Mini-
mizing the turbulence requires many subtle skills
that only grueling experience can optimize, but
four top the list.

Decomposition into Sprintable Form
Agile development requires the product owner to
decompose user stories until they’re small enough
to be executed in a sprint while still being substan-
tial enough to show business value. Likewise, the
technical team decomposes user stories to a form
that can be efficiently built within sprints. The ar-
chitect’s contribution to decomposition consists of
identifying the boundaries of architectural signifi-
cance and working with the product owner and
technical team to ensure that the overall decom-
position of work follows these boundaries. An ar-
chitecturally significant boundary exists between
any two collections of business or technical func-
tionality whose hardware and software, design
patterns, or quality attributes are nontrivially dif-
ferent. Consider the two examples in Figure 2.

In the first example, we needed to build an
enterprise Web service for third-party data using
service-oriented architecture (SOA) practices. The
service project team used a nine-sprint approach
structured around the three major areas of techni-

There always
seems to be
a business

priority that
justifies

bypassing good
architecture.

	 March/April 2010 I E E E S o f t w a r e � 45

cal functionality—the service interface, the persis-
tence layer, and the external data retrieval. In the
first few sprints, the team published the service in-
terface. A client call to the service returned only
one hard-coded record, but the transaction was
via a fully functional service call with a well-de-
fined contract. Architecturally, this tackled Java,
Web services standards, XML, and calling pat-
terns while giving the client system a record for
building screens to show the business. In the sec-
ond cluster of sprints, the team enabled the ser-
vice to returned about 100 records from the local
database but not from the external vendor. This
tackled the database environment, data model,
and object-relational mapping layer while showing
more cases for business review. In the third sprint
cluster, the team made the service call the exter-
nal vendor. This tackled the firewall issues, ven-
dor data format, and latency requirements. From
early on, the growing functionality of the service
provided a concrete measure of progress based on
working software, letting the team focus on a nar-
row set of technical challenges while giving the
business visible value.

In the second example, we needed to deliver a
large data warehouse environment. From a busi-
ness view, data warehouse deliverables lend them-
selves nicely to decomposition at the level of data
subjects, which tend to map nicely to well-defined
table structures. But from a technical view, attri-
butes within a table can have significant archi-

tectural differences. For example, premiums and
losses are basic insurance information that come
straight from source systems, but rerated premi-
ums and developed losses are complex calcula-
tions that can warrant entire systems unto them-
selves.13 From a business view, premiums are one
category and losses are another. From an archi-
tectural view, basic data attributes are one cat-
egory and complex calculations are another. To
balance these differences, the team decomposed
the work according to complexity, allowing the
basic attributes to be delivered quickly while pro-
gressively building more complex attributes more
slowly.

For each of these examples, and in general,14
the team needed to give as much consideration as
possible to making business-centric decomposi-
tion the primary approach. But for efficient proj-
ect delivery, the architectural boundaries must
sometimes prevail because iterating across archi-
tectural boundaries can open too many simulta-
neous challenges, causing risk to the project. If
we had tried to decompose the problem across
the data in the SOA example the way we did in
the data warehouse problem—for example, by
moving one-ninth of the attributes end-to-end
across nine sprints—the team would have had
to address many new technologies at once. This
would have caused great trouble, even if the busi-
ness preferred to see live data much earlier than
it did.

Database example
Correct decomposition—Different architectural boundaries, sometimes within one table, were the challenge.

(1) Initial source data
(2) More source data
(3) More source data
(4) More source data
(5) Finish source data

(1) Structural processing
(2) Direct processing
(3) Mapped processing
(4) Calculation processing
(5) Complex processing

(1) Primary key/foreign key structure
(2) Direct attributes
(3) Mapped attributes
(4) Calculated attributes
(5) Complex attributes

Incorrect decomposition—Well-de�ned tools across the breadth of the work didn’t create challenging boundaries.

Service-oriented architecture example
Correct decomposition—Each level of “depth” to which the call was handled crossed an architectural boundary.

(1) Service interface (2) Local database (3) External vendorClient

(1) Start interface
(2) More interface
(3) Finish interface

(1) Start database
(2) More database
(3) Finish database

(1) Start vendor
(2) More vendor
(3) Finish vendor

Client

Incorrect decomposition—All of the data attributes were of relatively low complexity.

(1) Source data (2) Data processing (3) Output data

Figure 2. Everyone contributes to decomposing user stories to sprintable form. The architect contributes by leveraging
the boundaries of architectural significance, as shown in these examples. The numbers represent sprints or clusters
of sprints, depending on the amount of work.

46	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Likewise, if we had tried in the data ware-
house example to decompose the problem across
technology layers the way we did in the SOA
problem, it would have slowed basic attributes to
the speed of the difficult attributes. This would
have caused severe underdelivery, even if the busi-
ness preferred to see its most complex attributes
as soon as possible. The inability of these two
examples to use each other’s decomposition ap-
proach also shows that the decomposition must
match the nature of the deliverable.

Advocacy with the Product Owner
The path from decomposed problem to working
software runs through the product owner, re-
quiring the architect to promote the architectural
work’s value with that person. The two most criti-
cal aspects of this relate to creating and refactoring
the system design and stating the value of quality
attributes in terms of business value. Each requires
time from the team that will compete with busi-
ness functionality. If the product owner doesn’t
understand the architectural work’s value, the
work will continually get low priority in the prod-
uct backlog and result in an inferior architecture.

Fortunately, nearly all design work contributes
directly to quality attributes and nearly all qual-
ity attribute improvements translate into business
value. Maintainability results in business function-
ality being built faster in later sprints with quicker
enhancement turnaround for the life of the system,
resulting in faster speed to market. Scalability re-
sults in the system still delivering fast performance
when it encounters a huge spike at the peak of an
important marketing campaign, preventing the
loss of business at critical times. And so on. Nat-
urally, this connection from good architecture to
business value isn’t unique to agile development.
But the power that agile development gives the
product owner makes it particularly important to
clarify the value frequently, with the most impor-
tant advocacy taking place in the first few sprints
when there’s high value in building architecturally
heavy and hard-to-reverse components11 that tend
to produce less visible working software.

For example, we were producing an intranet
application slated to have about 300 data entry
screens. We could have produced as many screens
as possible in the first few sprints to show fast
progress and inspire stakeholder confidence. In-
stead, we persuaded the product owner to let the
team build a flexible input field-editing design with
high reusability across all screens. This resulted in
fewer screens in the early sprint reviews, but it in-
creased the system’s maintainability. Toward the

end of the project, it allowed screen production at
a rate not possible had we not carefully explained
to the product owner the early architectural work’s
value and gained approval to do it.

Architecture Backlog
Like all stakeholders, the architect will want to put
functionality into the product more quickly than
project velocity will allow. This requires some func-
tionality (in this case architectural) to be placed on
the product backlog. As with all use of the product
backlog, the work is placed in priority order; and if
there isn’t enough time or money to get to the work,
it might not get done. You could argue that this re-
sults in a compromised architecture. Certainly if
architectural work receives such a low priority that
it never gets done, the architecture will degrade.
But proper use of product backlog principles and
proper advocacy with the product owner should
result in highly valuable architectural work getting
done, with less valuable architectural work poten-
tially not happening before the project stops.

To keep a clear focus on architecture and to
facilitate architectural scoring, a separate but con-
nected product backlog called the architecture
backlog should track the architecture work. Ac-
cording to most literature, there’s just a single
product backlog. In practice, I’ve found it useful to
maintain several physical product backlogs, each
focused on their purpose but all collectively serv-
ing as the one logical product backlog. The out-of-
scope backlog clarifies what isn’t the goal, the wish
list backlog lists work that will probably never get
done, and so on. Such modularization helps keep
the clarity of the main backlog as high as possible
without losing a full perspective. So it is with the
architecture backlog. It’s maintained by the ar-
chitect, communicated to the product owner and
team at the appropriate times and places, and has
its items moved to the main backlog on the basis of
the product owner’s judgment as influenced by the
architect. I’ve found it particularly helpful to give
the items a weight and score that provide a grade
of the project’s architectural quality as it executes.
Such scoring provides a clear, measurable mecha-
nism for encouraging the product owner to move
stories from the architecture backlog to the main
backlog and get them done.

Incremental Enterprise Architecture
The approach to architecture I’ve advocated so
far focuses entirely on project execution on the
assumption that the architect’s single best oppor-
tunity to move system architecture in the right
direction comes from guiding the increments of

Iterating across
architectural

boundaries can
open too many
simultaneous
challenges,
causing risk

to the project.

	 March/April 2010 I E E E S o f t w a r e � 47

working software built during sprints. Much of
this directional influence focuses on meeting the
project’s business objectives, but maximum value
to the larger organization requires supplementing
this guidance with an enterprise architecture (EA)
perspective.

Using the four functions we’re limiting ourselves
to here, I define EA as the process of ensuring that
architects

■■ draw from a uniform hardware and software
stack,

■■ leverage the same design patterns and design
pattern language,

■■ score against the same quality attributes us-
ing the same definitions and a uniform scoring
scale,

■■ do each of these on both an intra- and intersys-
tem basis, and

■■ communicate with each other and their prod-
uct owners.

The intersystem requirement is based on the ob-
servation that system interaction potentially intro-
duces a new layer of design patterns15 and might
shift the overall quality attributes—for example,
two systems can scale individually but don’t scale
when they interact. Most of this definition of EA is
independent of agile, but from an agile perspective,
the key aspect is the communication and collabo-
ration it requires among the architects and from
the architects to the technical teams and product
owners.

Communication among the architects is best
achieved by having a centralized EA practice and
formal EA processes. Senior management must
create this practice, ensure that it facilitates and
measures communication among the architects,
and fund it to the degree they’re serious about
achieving good EA. Once formed, this practice
must establish formal processes and tools, such
as an architectural steering committee that pub-
lishes uniform architectural scores, a peer review
process that checks for issues and provides action-
able improvements, and stewardship of a growing
body of standards derived from project work. But
at all times, two core agile considerations must
dominate. First, this is a community of collaborat-
ing individuals, not just a process or a collection of
artifacts. Second, the power of this process isn’t its
formal authority but the legitimacy it derives from
its architects’ expertise and their direct participa-
tion in project work.

Communication to the agile teams and product
owners is best achieved by physically decentral-

izing architects and having them incorporate EA
concerns at the interaction points. The centralized
activities I’ve advocated so far are an important,
but not major, part of the architect’s time. An ar-
chitect should spend as much time as is reasonable
physically collocated with the team and product
owner to maximize opportunities for direct com-
munication. As the architect advocates aspects of
the architecture for the project work, he or she
must incorporate EA concerns. For example, when
advocating a certain hardware and software stack,
base it on not just the project’s needs but also the
desired EA direction—likewise with design pat-
terns and quality attributes. This is particularly
important for intersystem concerns. The architect
is uniquely positioned to understand intersystem
dynamics that the team and product owner might
not, giving the architect a unique responsibility to
make hidden problems clear or identify broader
opportunities that others might not see. Most of
the focus, for everyone including the architect,
will likely remain on the business functionality for
which the project was funded and on the short-
term execution challenges that emerge on any proj-
ect. But with a reasonably solid vision of the EA’s
goals and effective incorporation of good architec-
ture in every sprint on every project across time,
the EA state should steadily improve.

For example, in 2009 my company won an in-
dustry award for “Creating an Agile Business Intel-
ligence Infrastructure.”16 The company funded the
project for business reasons in 2008, but the EA
community conceived the architecture in 2006—
two years before any opportunity existed to deliver
it. The problem was that the research community
operated on a platform isolated from the main data
warehouse, resulting in extreme siloing, high data
redundancy, and inadequate operational proce-
dures. At the same time, the main data warehouse
used technologies that didn’t meet the researchers’
needs and had operating norms too restrictive for
research work.

On the basis of many years of working with the
two departments and understanding their unique
cultures and environments, the architects proposed

About the Author
James Madison is a senior information architect at a large insurance company and
the primary instructor for agile training in the enterprise architecture department. His
agile projects include Web, full-client, service-oriented architecture, data warehousing,
and projects not traditionally agile such as infrastructure building and platform migration.
Madison has a master’s degree in computer science from Rensselaer Polytechnic Institute.
Contact him at madjim@bigfoot.com.

48 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

building a middle ground: a layer that used the re-
search platform’s technologies along with the data
warehouse’s operational procedures and central-
ized data assets, but adapting each to balance re-
searcher fl exibility, system maintainability, and
operational effi ciency. The EA solution sat on the
shelf for two years. Once a project presented the
opportunity to move the EA solution forward, the
architects leveraged the project, the success was
recognized in both the organization and the indus-
try, and the architecture’s reusability makes it at-
tractive for future projects.

A gility and architecture aren’t at odds.
Agile development gives the architect re-
peated opportunities to work closely with

the business and technical teams to continually
guide systems in the direction of good architec-
ture. Doing so presents challenges, some inherent
in the diffi culty of achieving good architecture re-
gardless of methodology, some caused by having
to drive to long-term outcomes using a series of
short-term events. By simplifying agile methods to
a perspective such as the one presented here and
being infl uential at the critical interaction points,
a skilled architect can adapt to agile development
while staying focused on the core architectural
work. This will ensure that both individual sys-
tems and their aggregate enterprise behavior meet
the needs of the business today, and are technically
sustainable for years to come—an architectural
value proposition that’s independent of delivery
methodology.

References
 1. K. Schwaber, Agile Project Management with Scrum,

Microsoft, 2004.
 2. K. Beck and C. Andres, Extreme Programming Ex-

plained: Embrace Change, 2nd ed., Addison-Wesley
Professional, 2004.

 3. M. Fowler, Patterns of Enterprise Application Archi-
tecture, Addison-Wesley Professional, 2002.

 4. E. Gamma et al., Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison-Wesley
Professional, 1995.

 5. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 2nd ed., Addison-Wesley Profes-
sional, 2003, pp. 71–98.

 6. R. Kazman, M. Klein, and P. Clements, ATAM: Meth-
od for Architecture Evaluation, tech. report CMU/SEI-
2000-TR-004, ESC-TR-2000-004, Software Eng. Inst.,
Carnegie Mellon Univ., 2000.

 7. M. Poppendieck and T. Poppendieck, Lean Software
Development: An Agile Toolkit for Software Develop-
ment Managers, Addison-Wesley Professional, 2003,
pp. 38–45, 103–111.

 8. K. Schwaber and M. Beedle, Agile Software Develop-
ment with Scrum, Prentice Hall, 2002, pp. 23–30.

 9. R. Kimball and M. Ross, The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling,” John
Wiley & Sons, 2002, pp. 78–88.

 10. V. Subramaniam and A. Hunt, Practices of an Agile
Developer: Working in the Real World, Pragmatic
Bookshelf, 2006, pp. 155–157.

 11. M. Fowler, “Who Needs an Architect?” IEEE Soft-
ware, vol. 20, no. 5, 2003, pp. 11–13.

 12. M. Ross and R. Kimball, “Differences of Opinion,”
Intelligent Enterprise, 6 Mar. 2004.

 13. J. Madison, Very Large Calculation Systems, Casualty
Actuarial Soc., 2009.

 14. J. Shore and S. Warden, The Art of Agile Development,
O’Reilly, 2008, pp. 214.

 15. G. Hohpe and B. Woolf, Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional, 2003.

 16. “Best Practices in Business Intelligence: Creating an
Agile BI Infrastructure,” Computerworld, 2009; www.
biperspectives.com/awards.aspx.

Silver Bullet Security Podcast
In-depth inter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts
Sponsored by

