

Oracle Database 10g & Multi-Terabyte Database Migration Page 1 of 10

Oracle Database 10g & Multi-Terabyte Database Migration
By: Saravanan Shanmugam and James Madison, The Hartford (http://www.thehartford.com/)

Migrating large Oracle databases such as data warehouses and decision support systems,
which can easily consume many terabytes, presents one of the biggest technical challenges for
any organization.

Prior to Oracle Database 10g, there were no high-speed tools available to migrate in a short
time, such as over a weekend. Such migrations would require extensive planning, would have
to be executed over the course of many days, and would require a mix of data movement
technologies such as the export/import utility, "create table as select" (CTAS), or third party
migration utilities that are not supported by Oracle.

Oracle Database 10g Cross Platform Transportable Tablespace Technology – XTTS (1) makes it possible to move large
amounts of data across platforms in a comparatively short time with fairly straightforward planning. And Oracle Recovery
Manager – RMAN (2) easily and quickly takes care of endian conversion, if required.

Assume your challenge is to move 7 TB across disparate hardware and versions of UNIX in less than 24 hours (a situation very
similar to that of the authors'). How can this be done? The answer is provided below.

TECHNOLOGIES FOR MIGRATION

The process for selecting the technology set to facilitate large migrations requires considering the tools available and then
choosing a set of technologies most appropriate for the various parts of the migration process. The technologies considered for
the migration were:

Technology Comments
Export/import

Classic data mover, available for years

Various third-party tools Most originated prior to Oracle developed technology. XTTS and
Data Pump make third-party tools far less valuable

Data Pump (3)

Available as of Oracle Database 10g

Cross platform transportable
tablespace (XTTS)

Available as of Oracle Database 10g

The deciding factor was simply speed. We were willing to accept negatives in other aspects of the tool's use: high complexity,
difficult interfaces, extensive environmental setup, manual intervention, and just about any other negative as long as we hit the
target of moving 7 TB in 24 hours.

Export/import was chosen as the way to move metadata. But for the bulk of the 7 TB, it was quickly dropped. As most DBA's
know, export/import on 7 TB would have taken forever. Third-party tools provided a glimmer of hope early on, but we
determined that XTTS was a better bet for this task for reasons that will be discussed in this paper. Further, given the size and
complexity of the environment in which most major data migrations occur, having all the tools supported by a single industry-
leading vendor is a desirable safety net when technical problems occur.

Unlike traditional options for large migrations, XTTS and Data Pump provided the speed we needed, and despite our
willingness to accept any secondary negatives, these tools also proved fairly straightforward to setup, use, and automate.

Saravanan Shanmugam is an
Oracle Certified Master, lead
DBA and primary database
architect for the platform
migration on which this paper
is based.

 James Madison is the project
manager and primary
application architect for the
migration.

Oracle Database 10g & Multi-Terabyte Database Migration

CROSS PLATFORM TRANSPORTABLE TABLESPACE

Oracle8i introduced the transportable tablespace (TTS), which allowed for fast movement of large amounts of data between
databases with the same block size. TTS was a key development for large environments because previously, no Oracle utility
could handle large volumes in a reasonable time. Oracle9i made TTS even more useful by removing the block size restriction,
but like the previous release, Oracle9i still required homogeneous operating systems (OS's). Oracle Database 10g removed the
final barrier by introducing Cross Platform TTS (XTTS) which allows TTS to function across heterogeneous OS's.

Now, tablespaces can be transported among databases of different block sizes residing on different OS's, thus allowing the
DBA to move tablespaces virtually anywhere in the database environment.

Table 1 lists the major steps in a typical XTTS process. Further details are discussed later in this article. Other variations can
be used based on the needs of your specific environment. Oracle documentation covers the details of such variations. Some of
the main benefits of using XTTS are:

• Reduced overall complexity of the process because XTTS is a high-level copy of data
• Reduced errors since XTTS moves objects as a unit unlike table-by-table methods that could miss objects or rows of data
• No need to create or rebuild indexes
• Movement of tablespaces between

heterogeneous OS platforms
• Endian conversion, if needed, is only 3%

slower than a standard OS file copy
• Statistics do not have to be recollected for

tables and indexes that are moved

BYTE ORDER; LITTLE/BIG ENDIAN

The most critical functionality of XTTS is the
ability to handle differing byte orders. When a
word of data is written to a file, the bytes of the
word can be written either with the least
significant byte first or the most significant
byte first. If the least significant byte is first,
the byte order is little endian. If the most
significant byte is first, the byte order is big
endian.

For example, consider the decimal number 1032. T
accordingly, and put in spaces every eight bits for
bytes are to be written into the four byte addresses
endian:

Endian

Little 000
Big 000

Figure

To remember how this works, either remember tha
Little endian puts the Least significant byte in the

SELECT * FROM V$TRANSPORTABLE_PLATFORM

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
------------ --------------------------------- -------------
 1 Solaris[tm] OE (32-bit) Big
 2 Solaris[tm] OE (64-bit) Big
 3 HP-UX (64-bit) Big
 4 HP-UX IA (64-bit) Big
 5 HP Tru64 UNIX Little
 6 AIX-Based Systems (64-bit) Big
 7 Microsoft Windows IA (32-bit) Little
 8 Microsoft Windows IA (64-bit) Little
 9 IBM zSeries Based Linux Big
 10 Linux IA (32-bit) Little
 11 Linux IA (64-bit) Little
 12 Microsoft Windows 64-bit for AMD Little
 13 Linux 64-bit for AMD Little
 15 HP Open VMS Little
 16 Apple Mac OS Big
 17 Solaris Operating System (x86) Little
 Page 2 of 10

his is 10000001000 in binary. If we assume a 32-bit word, pad with 0's
readability, we have: 00000000 00000000 00000100 00001000. If these
753 - 756, they would have the following configurations for little and big

Address
753 754 755 756
01000 00000100 00000000 00000000
00000 00000000 00000100 00001000

 1: Byte order for little and big endian

t we as human beings write numbers in big endian, or use the three L's:
Lowest address.

Query 1: Determining endian format

Oracle Database 10g & Multi-Terabyte Database Migration Page 3 of 10

The Oracle tool that does the actual endian conversion is Oracle Recovery Manager – RMAN, using the CONVERT command
(4). A detailed RMAN example is provided and discussed later in this article. To determine the endian format of your source
and target machines, run the query shown in Query 1, which shows the results from an Oracle 10.1.0.3 database with the
entries pertinent to the environment being discussed here highlighted.

 Event Comments

1 Check endian format on both source and target
databases

Query V$TRANSPORTABLE_PLATFORM as discussed later

2 Fix TTS violations in source database for the
tablespaces being moved

Execute dbms_tts.transport_set_check ('ts1,ts2',true);

3 Place tablespaces being moved in read only mode in
source database

Alter tablespace ts1 read only;

4 Validate the source database environment

For example, ensure that ORACLE_SID, ORACLE_HOME are set as
expected, etc. See Oracle documentation for more.

5 Create directory in the source database for the data
pump export

Create directory exp_dir as '/tmp2/dev/export'
Only needed if you want export dumps on target for import

6 Grant read for the directory to oraop

Grant read on directory exp_dir to oraop;

7 Export meta data from source database

If you plan to take a dump file and move it to the target platform

8 Drop or rename tablespaces of same name in target
database

A tablespace must have a unique name within a database. If the
tablespace is shared between target databases, drop from all

10 Create the user concerned in the target database

If User does not exist in the Target database

11 Run RMAN CONVERT to convert to target endian

Only needed if endian format is different

12 Validate the target database environment For example, ensure that ORACLE_SID, ORACLE_HOME are set
as expected, etc. See Oracle documentation for more.

13 Create database link to source

Only needed if you want to import meta data over a link

14 Import meta data into target

Run the import script

15 Run the import meta data in another target database

If the tablespaces are to be shared between databases

16 Make tablespaces in source and target read write Do not attempt to make it read write if the tablespaces are shared
between databases

Table 1: Major steps in a typical XTTS process

DATA PUMP

Data Pump is a utility released with Oracle Database 10g. It has functionality similar to the export and import utilities, but is
much faster. Consult Oracle's documentation for the full mapping between import/export and Data Pump.

The biggest advantage of Data Pump over export/import is the ability to pull tablespace metadata to facilitate plug-in
tablespaces in the target database over network links. This greatly reduces the overhead of taking an export dump of
tablespace metadata, using FTP to get it to the target server, and then importing it. Other benefits of Data Pump include the
DBMS_DATAPUMP package that facilitates automation, a web interface, and improved restart capability.

Oracle Database 10g & Multi-Terabyte Database Migration Page 4 of 10

TESTING ENVIRONMENT SETUP

Using the above technologies, we can now dig into some of the details related to the moving of data. The details discussed
here are for the testing environment used by the authors' in preparation for the production migration:

Attribute Source Server Target Server
Operating system Tru64 5.1b -- A little endian OS HP-UX 11.11 – A big endian OS
CPU's 2 at 667 MHz 2 at 1 GHz
RAM 2 GB 32 GB
Database size 15 GB None before migration,
Database version 10.1.0.3 10.1.0.3
Database global name DTEST DTEST1
Database mount point(s) /plad02/oradata/dtest, /olap003/oradata/dtest

/dmex002/oradata/dtest, /plad03/oradata/dtest
/ona7/appl/oracle/oradata/dtest

For production environments, the process is identical except the sizes are larger, there are more filesystems to mount, more
data files to move, etc. Thus we will discuss the 15 GB test environment in detail to keep the discussion manageable but will
address the performance issues that come with production volumes later in the discussion.

The following were the OS level preparations made prior to testing the migration process. The goal here is to allow a target-
side conversion to be run over NFS. The setup is shown in Figure 2 and is:

1) Establish a gigabit connection between the source server and the target server.

2) Mount via NFS over the gigabit connection the datafiles from the source server to the target server.

a) Exports from the source for our test were:
/plad02/oradata/dtest, /olap003/oradata/dtest,
/dmex002/oradata/dtest, /plad03/oradata/dtest

b) Mounts on the target for our test were:
/pladt_plad02/oradata/dtest, /pladt_olap003/oradata/dtest,
/pladt_dmex002/oradata/dtest, /pladt_plad03/oradata/dtest

The largest advantage of a design based on NFS is that it eliminates the need for having temporary space on the target side
equal to the amount of data being moved. That is, if an ftp approach is taken, the 7 TB's of data would have to be moved via
ftp to a 7 TB holding area on the target and the 7 TB would then have to be endian-converted to the permanent 7 TB location.
RMAN cannot do endian conversion "in place." Most environments simply do not have an extra 7 TB ready to use as
temporary space, so the ftp to temporary space is often not feasible. The other advantage is that it makes the process a single
step. If a mechanism such as ftp were used, moving the files would be one step and the conversion would be the second.

The single largest negative of the NFS approach is that
the NFS protocol has high overhead. Where ftp can be
well optimized for network throughput using techniques
like jumbo MTU and increasing the TCP window size,
NFS offers less opportunity for optimization with such
methods. Despite this, we recommend the use of NFS
because it simplifies the overall design. NFS is a
reliable technology, implementation is very straight
forward, and as noted, produces a one-step process.

We even considered an approach such as doing ftp into
named pipes feeding RMAN processes. This could
potentially allow the use of ftp in a single-step process
with no need for temporary storage, but that approach
was deemed too complex. We felt that the simple and
reliable nature of the NFS solution produced the design
that offered the greatest chance for success, and decided
to address the NFS overhead through adding network
interface cards (NIC's) as detailed later in this
discussion.

Figure 2: NFS used to present source storage to target server

Source Server

Data
Store

NFS

Target Server

Data
Store

Gigabit
Connectivity

Oracle Database 10g & Multi-Terabyte Database Migration Page 5 of 10

DETAILED MIGRATION TEST

These are the steps required. Substitute the particulars of your environment for the particulars of the test environment being
used for the current discussion. These fall into two major categories: preparation and execution.

Note: The procedure for transporting tablespaces is documented at length in Oracle Database Administrator's Guide (5).

TRANSPORT PREPARATION

1) Create the target database, called DTEST1 here, as follows:

a) Use the same character set (US7ASCII) and national character set (AL16UTF16) as the source database.
b) Use a dictionary managed system tablespace; a locally managed system tablespace will not allow dictionary managed

user tablespaces to be plugged in or created.

2) Create a partial clone of the source database, called CLONE here, consisting of only the system, sysaux and undo

tablespaces.

3) Drop entries for all tablespaces other than system, sysaux, and undo using the DROP TABLESPACE command in the

CLONE database. This is done to prevent the loss of any sysaux tablespace entries such as database control metrics or
database workload repository information.

4) Perform a full database export dump of the CLONE database:

exp system/***** full=y file=clone.dmp log=clone.log

5) Prepare a tablespace creation script for all tablespaces in the source database, other than system, sysaux, and undo,

including temporary tablespaces. This will be used in the target database.
a) For non-temporary tablespaces, ensure that the size is 25 MB.
b) For temporary tablespaces, ensure that the size is the same as in the source database.
c) The mount points used are as they appear on the target since that is where this script will be run.

6) Run the script just prepared against the target server, which is DTEST1 in our discussion. This ensures that no users were

left out and that any datafiles in the target belonging to other database are not being overwritten during the import.

7) Determine the Oracle Directories and their paths in the source database, DTEST, with this query:

select directory_name,
 directory_path
 from dba_directories

8) Create symbolic links with the directory path structure pointing to existing mounts in the target server. This is done to

prevent the failure of the directory creation while doing a full database import in the next step.

9) FTP the clone.dmp file created above to the target server and import it into the target database, DTEST1. This creates all

users, and objects other than tables and indexes. Most PL/SQL objects will likely be invalid due to the absence of tables
and indexes.

imp system/******
full=y file=clone.dmp
log=clone.log ignore=y

10) Drop the tablespaces in the target database except the sysaux, system, undo and temporary tablespaces.

Oracle Database 10g & Multi-Terabyte Database

TRANSPORT EXECUTION

1) Determine the endian of the source and target databases as shown in Query 2. The query results are shown here for both

the source and target.

2) Check for the Transportable Tablespace violations for the tablespaces being transported, as shown here:

execute dbms_tts.transport_set_check(

 'INDX,USERS,INDX,TEST1,TEST2,SEMCI,ARS2,DM_AUTO,OEMREP',
 true
);

PL/SQL procedure successfully completed.

select * from transport_set_violations;
Sys owned object MIKE1 in tablespace USERS not allowed in pluggable set

3) Remove all violations. Some of the violations

may include materialized views. These should
be dropped and recreated manually after the
tablespaces are transported.

4) Create any directories needed for XTTS log

files:

 create directory exp_dir
 as '/home/oracle/mig';

5) Create a database link while connected as

system which will allow metadata from the
source database to be used by the import dump
utility:

 create database link 'dtest.world' connect to system

identified by test01 using 'dtest.world';

6) Run an RMAN on the datafiles as shown in Listing 1 to convert the endian format.

a) This will make a copy of datafiles from the NFS mount points to the local location ‘/ona7/appl/oracle/oradata/dtest’.
b) In this example, the endian conversion is performed using the RMAN CONVERT command on the target system
c) The degree of parallelism used here was 3. Note the advantage of doing so as shown in Table 1.

7) Perform an import dump

(impdp) to import the metadata
for the tablespaces via the
dtest1.world link as shown in
Listing 2

8) Copy the objects such as

external tables and bfiles to the
target location under the Oracle
Directory specified.

9) Run utlrp.sql script to recompile

the invalid objects.

10) Run validation checks.

11) Make the tablespaces read/write

for both the source and target
database.

SELECT D.PLATFORM_NAME, ENDIAN_FORMAT
FROM V$TRANSPORTABLE_PLATFORM TP, V$DATABASE d
WHERE TP.PLATFORM_NAME = D.PLATFORM_NAME

PLATFORM_NAME ENDIAN_FORMAT
-- --------------
HP Tru64 UNIX Little

PLATFORM_NAME ENDIAN_FORMAT
-- --------------
HP-UX (64-bit) Big

Query 2: Determining source and target endian
Migration Page 6 of 10

0

5

10

15

20

25

30

35

Degree 1 Degree 2 Degree 3 Degree 4

Degree of Parallelism

Ti
m

e
in

 M
in

ut
es

Table 1: RMAN times by degree of parallelism for a 15 GB move

Oracle Database 10g & Multi-Terabyte Database Migration Page 7 of 10

RESULTS OF THE TEST RUN

The results of this test showed that we were able to migrate a 15 GB just under 11 minutes with a parallelism of degree 3. This
did not include all the manual efforts beyond the actual data move itself, but such manual activities can be highly automated to
minimize them during the actual migration of production systems. In determining the degree of parallelism that worked best
for RMAN in our environment, degrees of 2, 3, and 4 were tested, and the best performance was achieved at degree 3 as shown
in Table 1.

EXTRAPOLATING TO PRODUCTION

Based upon the test results, we determined we would need four gigabit cards for each of the source and target servers
connected through four private network connections: 15 GB in 11 minutes is 7 TB in 93 hours, and with four NIC's, that would
be 7 TB in 23.25 hours, as needed.

One concern was that parallelism often does not fully scale. In our environment, however, it scaled very nicely. Our source
database had over 100 file systems. This allowed us to run dozens of processes with each hitting only one or a few file systems
at a time. This prevented I/O contention, but more importantly we found that it actually increased throughput per NIC because
all those processes running against disks with no I/O contention put maximum pressure on the 4 NIC's. Another concern raised
was that the bus or drive controllers could become an issue. These turned out to be non-issues for us but should be verified on
a case by case basis.

A generalized diagram of a large scale environment is shown in Figure 3. In this case, 100 source file systems and 100 target
file systems are shown, along with four gigabit Ethernet cards over which the NFS traffic travels. A key point to note is that
the file systems must be logically grouped to go over specific NFS mounts. This must be done at the time the NFS mounts are
defined, not at the time of the script execution. For example, the 25 file systems /pl26 to /pl50 will have to be NFS mounted
specifically over the same NIC card to the target server mount points /tl26 to /tl50. Once that is done, the scripts that actually
do the execution simply reference /tl26 to /tl50.

impdp system/test
DIRECTORY=exp_dir
NETWORK_LINK=dtest.world TRANSPORT_TABLESPACES=
 INDX,TEST1,TEST2,SEMCI,ARS2,DM_AUTO,OEMREP
TRANSPORT_FULL_CHECK=n TRANSPORT_DATAFILES=
/ona7/appl/oracle/oradata/dtest/ars2001.dbf,
/ona7/appl/oracle/oradata/dtest/oemrep01.dbf,
/ona7/appl/oracle/oradata/dtest/ss02.dbf,
/ona7/appl/oracle/oradata/dtest/test102.dbf,
/ona7/appl/oracle/oradata/dtest/users01.dbf,
/ona7/appl/oracle/oradata/dtest/dm_auto001.dbf,
/ona7/appl/oracle/oradata/dtest/semci001.dbf,
/ona7/appl/oracle/oradata/dtest/ss03.dbf,
/ona7/appl/oracle/oradata/dtest/test201.dbf,
/ona7/appl/oracle/oradata/dtest/indx01.dbf,
/ona7/appl/oracle/oradata/dtest/ss01.dbf,
/ona7/appl/oracle/oradata/dtest/test101.dbf,
/ona7/appl/oracle/oradata/dtest/test301.dbf

Listing 2: Importing the metadata information with import dump

Listing 1: RMAN code for endian conversion

run {
allocate channel d1 device type disk;
allocate channel d2 device type disk;
allocate channel d3 device type disk;
CONVERT DATAFILE
 '/pladt_dmex002/oradata/dtest/users01.dbf',
 '/pladt_dmex002/oradata/dtest/indx01.dbf',
 '/pladt_plad02/oradata/dtest/ss01.dbf',
 '/pladt_plad03/oradata/dtest/ss02.dbf',
 '/pladt_olap003/oradata/dtest/ss03.dbf',
 '/pladt_plad03/oradata/dtest/oemrep01.dbf',
 '/pladt_dmex002/oradata/dtest/test301.dbf',
 '/pladt_dmex002/oradata/dtest/test102.dbf',
 '/pladt_dmex002/oradata/dtest/test101.dbf',
 '/pladt_dmex002/oradata/dtest/test201.dbf',
 '/pladt_dmex002/oradata/dtest/semci001.dbf',
 '/pladt_dmex002/oradata/dtest/ars2001.dbf',
 '/pladt_dmex002/oradata/dtest/dm_auto001.dbf'
FROM PLATFORM 'HP Tru64 UNIX'
DB_FILE_NAME_CONVERT
 '/pladt_plad02',
 '/ona7/appl/oracle',
 '/pladt_plad03',
 '/ona7/appl/oracle',
 '/pladt_olap003',
 '/ona7/appl/oracle',
 '/pladt_dmex002',
 '/ona7/appl/oracle';
}

Oracle Database 10g & Multi-Terabyte Database Migration Page 8 of 10

NON-DATABASE CONSIDERATIONS FOR MASS MOVES

From our discussions so far, it is clear that Oracle provides the database technologies needed to move large amounts of data in
a timely and error-free manner. Understanding the non-database reasons that would drive the need for such large-scale
migrations is also important. That is, we have shown that it can be done, but it is important to also see why it must be done in
appropriate situations. These reasons come from two major areas: the application architecture, and the value to the business.

APPLICATION ARCHITECTURE

In data warehousing environments, is it valuable to be able to relate data across systems. Examples from the authors'
environment include an identifier that is unique for every load that allows the data to be clearly identified throughout the
warehouse, and a set of global keys that allow data from fairly disparate systems to be related to each other. This ability to
have global identification has tremendous value from both an application and business perspective, but it causes a very
complex web of system coupling this is essentially impossible to take apart. Thus, finding ways to just pick up and move this
web of complexity as a unit is valuable. Mass migrations using Oracle tools as described above facilitate this.

Another inevitability in a warehouse is the tendency of systems to join against each other. This stems from one of the basic
requirements of a warehouse, to be the integration point for the organization rather than having information in silos (which is
how it tends to exist in the organization at large). This need to integrate silos leads to many joins at the application layer
between the various sources. What would happen if we attempted to move systems in pieces with all these joins occurring?
Many of them would then cross between the old and new instances.

Such cross-instance joins tend to have horrible performance. If it were possible to have all the tables that participate in any
join be in either the old or new instance exclusively, the problem could be solved with a driving-side hint. Trouble is, the joins
instead tend to get their joins mixed between instances. The solution is simply to move the database as a unit.

 Figure 3: Extrapolation of the testing construct to the full-size production environment

/pl76
to

/pl100

/pl51
to

/pl75

/pl26
to

/pl50

/pl01
to

/pl25

/tl76
to

/tl100

/tl51
to

/tl75

/tl26
to

/tl50

/tl01
to

/tl25

Source Server Target Server

4 x Gigabit
Connectivity

NFS

Oracle Database 10g & Multi-Terabyte Database Migration Page 9 of 10

Global keys and cross-instance joins are just two problems to consider, and every environment has the potential to create its
own unique challenges, but once the decision is made to move the database as a unit, one other major problem often comes up:
most shops run their back-end systems on the same server as the database. That is, from the inception of most batch-intensive
shops like data warehouses, a default assumption has been that the system would be on the same server as the database and
thus the systems can do such things as easily access the database's utl_file_dir location, bypass the listener, etc. Trouble is, if
your shop has run for years on this assumption and built many systems on this assumption, suddenly moving the database can
cause a problem.

The immediate thought may be to move all the systems at the same time as the database. If that is possible, do it! Such a "lift
and load" approach is great if it can be done, but it is frequently not viable because moving systems is generally vastly more
difficult than moving the database. Essentially, Oracle has now provided "silver bullet" tools for massive data moves, but no
silver-bullet solutions exist to move dozens or hundreds of systems with complexities like those discussed above. The solution
to this is to move the database first then move the systems over time. To facilitate this process of moving the database without
systems, only a few minor changes are needed. These are:

1) Utilize the TWO_TASK environmental variable to allow systems to find remote databases.
2) If you use OS authentication, enable remote_os_authent so that the database will allow the systems to connect. Use a

database trigger if enabling remote authentication creates too big a security hole.
3) Create a writable NFS mount back to the old server for all directories listed in the utl_file_dir database parameter.
4) Create a writable NFS mount back to the old server for all directories used for external file operations.

Once these are done, the database can be moved without the systems, and the systems can be migrated over time.

VALUE TO THE BUSINESS

Large database moves generally occur in a migration context that includes the purchase of new hardware. In a data warehouse
such purchases can easily run into the millions of dollars. Every day that this new hardware goes unutilized costs the company
thousands of dollars in depreciation and maintenance costs while yielding no value to the business. To minimize this, the goal
is to get as many of the systems or as much of each system off the old hardware and onto the new as soon as possible.

As discussed, application architecture is often complex and very intertwined, so moving all the systems will likely be a painful,
time-consuming process. However, as we have elaborated in detail here, moving large databases as a unit, even while leaving
the systems in place, is quite feasible. If such an approach it taken, it gets the databases off the old hardware and on the new
quickly. This means much of the old storage can be shut down, ending the maintenance costs there, and the new hardware is
being utilized, thus providing ROI to the business on their major hardware purchase.

This approach reduces schedule risk by breaking the two hardest parts of the project into two mostly-separate pieces so that the
project can have more of a phased approach. The first phase is to move the databases without the systems. The next phase is
to move the systems now that the databases are safely on the new hardware. Phasing projects has a long history of being more
successful than any approach that lumps things together, and good project managers will likely jump on this opportunity to take
the two hardest parts of their project and separate them into discrete units of work.

Another advantage from a business perspective is that of minimized risk. A major migration by its nature is a very risky
endeavor, and managers at all levels will be looking for ways to mitigate risks at any point. The approach of moving databases
as a unit using Oracle-native tools helps do this. The business should be made aware that while moving the database as a unit
might sound risky, it is far less problematic than moving it in many pieces over many months because while each small piece
clearly has less risk than moving the whole database, the cumulative effect of moving many pieces over a large span of time
produces a larger total body of risk in the end. Once the single-unit approach is accepted, making it clear that all Oracle-native
tools will be used will also help sell the approach because using tools from a single vendor prevents integration issues when
setting things up and finger-pointing if vendor tools do not work together as planned.

Oracle Database 10g & Multi-Terabyte Database Migration Page 10 of 10

CONCLUSION

Moving large databases as a unit has the positive effect of closing a major line item early in the project. As scary as it might
sound to try to move a 7 TB database across platforms with an endian reversal in a weekend--the fact is that it can be done.
Give yourself a few days early in the week after the upgrade weekend to deal with fallout, but know that by about Thursday--
it's done! The handful of fallout issues will have been addressed, the project manager will have marked the task 100%
complete, the new hardware will be getting well utilized, and as you're eating lunch on Friday with a grateful manager paying
the bill, you'll be thinking..."That really wasn't so hard after all!"

REFERENCES

1. Oracle Cross Platform Transportable Tablespace
http://www.oracle.com/technology/deploy/availability/htdocs/xtts.htm

2. Oracle Recovery Manager – RMAN
http://www.oracle.com/technology/deploy/availability/htdocs/rman_overview.htm

3. Data Pump
http://www.oracle.com/technology/products/database/utilities/htdocs/data_pump_overview.html

4. RMAN CONVERT command
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10770/rcmsynta18.htm#RCMRF200

5. Using Transportable Tablespace
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10739/tspaces.htm - ADMIN01101

	Oracle Database 10g & Multi-Terabyte Database Migration

