
United States Patent

US009134999B2

(12) (10) Patent No.: US 9,134,999 B2
Madison et al. (45) Date of Patent: Sep. 15, 2015

(54) SYSTEMAND METHOD FORMONITORING 2005/0097505 A1* 5/2005 Gupta et al. 717/101
SOFTWARE DEVELOPMENT AND 2005/02895.03 A1 12/2005 Clifford

2006/0218554 A1* 9, 2006 Tobias et al. T18, 102
PROGRAM FLOW 2007/0016432 A1* 1/2007 Piggottet al. .. TO5/1

2007/O124186 A1* 5/2007 Virine 705/8
(75) Inventors: James A. Madison, Windsor, CT (US); 2007/0168918 A1 7, 2007 Metherall

Laif A. Wheeler, North Granby, CT 2007/0203856 A1* 8, 2007 Frohnhoefer et al. 705/400
(US) 2007/0271203 A1* 11/2007 Delvat TOS/400

2008.OO27776 A1* 1/2008 S tal. 705/8
73) Assi : HARTFORDFIRE INSURANCE 2008/031311.0 A1* 12/2008 RANG c al. TO6, 12
(73) Assignee: 2008/0313596 A1* 12/2008 Kreamer et al. 717/101

COMPANY, Hartford, CT (US) (Continued) O1

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 160 days. Amfahr et al. “Exploring Agile. The Seapine Agile Expedition'.

2011, Seapine Software, Inc., total pp. 161, retrieved from <http://
(21) Appl. No.: 13/588,694 downloads. Seapine.com/pub/ebooks/Seapine AgileExpedition.

ck

(22) Filed: Aug. 17, 2012 pdf>. (Continued)
O1

(65) Prior Publication Data

US 2014/0053127 A1 Feb. 20, 2014 Primary Examiner — Marina Lee
(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(51) Int. Cl.
G06F 9/44 (2006.01) (57) ABSTRACT

(52) U.S. Cl. A system and method for monitoring Software development
CPC. G06F 8/71 (2013.01); G06F 8/30 (2013.01) and project flow in the insurance industry using user stories is

(58) Field of Classification Search disclosed. The system and method include a communication
CPC G06F 8/30; G06F 8/71 interface that receives information included in communica
USPC .. 717/103 tions; a processor and memory to: identify from the moni
See application file for complete search history. tored communication a plurality of user stories; estimate a

priority and assign a value to each story; store each story and
(56) References Cited associated priority and value as a product backlog: calibrate

U.S. PATENT DOCUMENTS

5,815,638 A 9, 1998 Lenz et al.
6,073,107 A 6, 2000 Minkiewicz et al.
7,062,449 B1* 6/2006 Clark 705/7.15
7,069,229 B1* 6/2006 Richardson et al. 705/7.15
8,055,606 B2 11/2011 Kreamer et al.
8,566,779 B2 * 10/2013 Sukhenko et al. 717/103

2003/0135481 A1* 7/2003 Helmes et al. 707/1
2003/0187716 A1* 10, 2003 Lee 70.5/10
2004/0243968 A1 12/2004 Hecksel

Project
210-11 staffing

Storyboarding

Iterations and

the difference in the assigned value of each story by compar
ing each story and the associated assigned value, and itera
tively adjusting the assigned value based on the calibrated
difference; and update the product backlog of user stories and
associated calibrated assigned value; and a display device for
displaying the status of the Software development and project
flow based on the stories remaining in the product backlog as
compared to the completed user stories.

21 Claims, 10 Drawing Sheets

225

Product
Backlog

270

Pipelining

: 250

9 Eg
3 Centralized

Calibration
Financial Software

Gowermance Development

US 9,134,999 B2
Page 2

(56) References Cited 2012/0159441 A1* 6, 2012 Ghaisas 717/123
2014/0053127 A1 2/2014 Madison et al. 717/103

U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS

38885 A. i588 RE, et al. Mitch Lacey, “Estimating”, Jan. 2012, total pp. 5, retrieved from
2011 0191746 A1 8, 2011 Packbier et al. <https://msdn.microsoft.com/en-us/library/hh765979.aspx>.*
2011/0289475 A1* 11/2011 Sukhenko et al. 717/103
2012/0079449 A1 3/2012 Sanderson et al. 717/102 * cited by examiner

US 9,134,999 B2 Sheet 1 of 10 Sep. 15, 2015 U.S. Patent

US 9,134,999 B2 Sheet 3 of 10 Sep. 15, 2015 U.S. Patent

CN

OZ9

0 || 9

U.S. Patent Sep. 15, 2015 Sheet 4 of 10 US 9,134,999 B2

410 Main Story:
"Do Widgets

415
N- Big Story #1 Big Story #2 Big Story #3 Big Story #4

420
N. Smaller Story Smaller Story Smaller Story Smaller Story

#1a(H) #2a (H) #3a (H) #4a (M)

Smaller Story Smaller Story Smaller Story Smaller Story
#1b (M) #2b (M) #3b (M) #4b (M)

Smaller Story Smaller Story Smaller Story
#1c(L) #2c (M) #4c (L)

Smaller Story
#1d (L)

Product Backlog

Smaller Story
#4d (L)

430 E. -------------------- -----, -------

Nil iteration #1 iteration #3 Iteration ita teration i5

435 N Smaller Story Smaller Story Smaller. Story Smaller Story Smaller Story
#1a(H) #3a (H) #3b (M) #4b (M) #4c (L)

Smaller Story Smaller Story | | Smaller Story Smaller Story Smaller Story
#2a (H) #1b (M) #2c (M) #1c (L) #4d (L)

| Smaller Story Smaller Story Smaller Story
#2b (M) #4a (M) #1d (L)

FIG. 4

US 9,134,999 B2 Sheet 5 of 10 Sep. 15, 2015 U.S. Patent

099

Jed){
UOeceo

----------------------?j?ºw e!Jº!Jo fiup?eul |----|-------------------------------------:
(S)-edx.
UOeuS

US 9,134,999 B2 Sheet 6 of 10 Sep. 15, 2015 U.S. Patent

099

099

pee
UO2ULS
Uee.

seqdues aq, 3 A13 ºg

US 9,134,999 B2 Sheet 7 of 10 . 15, 2015 Sep U.S. Patent

OL is Auois Jes IZETEST C

6th Alios les?

CC
G# Auois Jes

trip Aious Jes

ei Ali Oas les?

EI E C zig Auois Jes

Lit Auous uesn

Mog e ra
| |

US 9,134,999 B2 Sheet 9 of 10 Sep. 15, 2015 U.S. Patent

U.S. Patent Sep. 15, 2015 Sheet 10 of 10 US 9,134,999 B2

US 9,134,999 B2
1.

SYSTEMAND METHOD FORMONITORING
SOFTWARE DEVELOPMENT AND

PROGRAM FLOW

BACKGROUND 5

Developing computer Software and program flows is a
complicated process. A myriad of different activities may be
included. These include problem definition, requirements
development, construction planning, high-level design, 10
detailed design, coding and debugging, unit testing, integra
tion, and system testing and maintenance, for example. The
main activities of computer Software and program flow con
struction include detailed design, coding, debugging, integra
tion and testing including unit testing and integration testing. 15
The quality of construction directly affects the quality of the
Software or program.
A variety of current technologies exist for monitoring the

Software development process; however, these technologies
possess significant limitations. Thus, there is a need for robust 20
technologies that may be used for, among other purposes,
managing how the Software development process is managed
and how software developers communicate during the Soft
ware development process.

25

SUMMARY

A system and method for monitoring Software develop
ment and project flow in the insurance industry using user
stories and calibrated estimation is disclosed. The system and 30
method include a communication interface that receives, via
one or more networks, information included in communica
tions among distributed experts following a centralized pro
cess; a processor and memory that are integrated to: identify
from a monitored communication a plurality of user stories 35
for completion during Software development; estimate a pri
ority of each of the plurality of user stories; assign a value to
each of the plurality of user stories, the assigned value repre
sents an amount of effort needed to complete a user story;
store each of the plurality of user stories and associated pri- 40
ority and value in the memory as a product backlog: calibrate
a difference in the assigned value of each of the plurality of
user stories by comparing a centralized position of each of the
plurality of user stories and the associated assigned value, and
iteratively adjusting the assigned value based on the cali- 45
brated difference; and update a product backlog of user sto
ries with the user story's associated calibrated assigned value;
and a display device for displaying the status of the Software
development and project flow based on a plurality of user
stories remaining in the product backlog as compared to a 50
plurality of user completed stories.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding may be had from the fol- 55
lowing description, given by way of example in conjunction
with the accompanying drawings wherein:

FIG. 1 illustrates a system diagram demonstrating the inte
gration of distributed estimation with a centralized process;

FIG. 2 illustrates a flow demonstrating the integration dis- 60
tributed estimation with a centralized process;

FIG. 3 illustrates an example of iterations and pipelines;
FIG. 4 illustrates the decomposition of the software devel

opment and program flow from the larger user story to Smaller
user stories for placement in a product backlog that may occur 65
during storyboarding;

FIG. 5 illustrates a flow diagram of centralized calibration;

2
FIG. 6 illustrates the gauge R&R calibration of FIG. 5;
FIG. 7 illustrates an output of the centralized calibration as

identified in FIG. 5;
FIG. 8 illustrates a process of financial governance associ

ated with the distributed estimation with a centralized pro
cess, using two approaches that are adapted together,

FIG. 9 shows an example computing device that may be
used to implement features described above with reference to
FIGS. 1-8; and

FIG. 10 shows a tablet computer that is a more specific
example of the computing device of FIG. 9.

DETAILED DESCRIPTION

Disclosed herein are processor-executable methods, com
puting systems, and related technologies and systems that
may be used to provide monitoring for Software development
and program flow. Of particular application to the insurance
industry, is the ability to develop software in an efficient
manner, even though many insurance companies do not lend
themselves to the flexible software developmentarchitecture.
The Software development and program flow may be classi
fied according to projects that provide types of insurance,
levels of insurance protection, and the states and locales
where insurance protection may operate and be activated.
The systems and methods disclosed monitor software

development and project flow in the insurance industry using
user stories. The systems and methods include a communi
cation interface that receives, via one or more networks, infor
mation included in communications among a distributed
experts including at least one of a product owner, at least one
developer, and a project manager, following a centralized
process. The systems and methods include a processor and
memory that act together to: identify from the monitored
communication a plurality of user stories for completion dur
ing the development; estimate a priority of each of the plu
rality of user stories from the monitored communication;
assign a value to each of the plurality of user stories, which
value represents the amount of effort needed to complete the
associated one of the plurality of user stories; and store each
of the plurality of user stories and associated priority and
value in the memory as a product backlog: calibrating the
difference in the assigned value of each of the plurality of user
stories by comparing the centralized position of each of the
plurality of user stories and the associated assigned value and
iteratively, adjusting the assigned value based on the cali
brated difference; and updating the product backlog with the
user story and associated calibrated assigned value. The sys
tems and methods include a display device for displaying the
status of the software development and project flow based on
the plurality of user stories remaining in the product backlog
as compared to the plurality of user stories completed from
the product backlog.
The technologies described herein may be used with devel

opment teams that operate according to any number of dif
ferent Software development methodologies, combinations of
different methodologies, and/or selective combinations of
concepts from different methodologies. One example of soft
ware development and program flow methodology is the
“waterfall methodology. Waterfall represents the classical
development model, in which progress of the software devel
opment gradually flows downward. Waterfall minimizes
planning overhead since planning is performed once at the
beginning; however, waterfall is generally inflexible, where
backing up to address mistakes is difficult, and only the final
phase produces a deliverable.

US 9,134,999 B2
3

Another school of thought in the domain of software devel
opment methodology is "agile’ development. This type of
development is iterative and incremental—most agile meth
odologies are designed to facilitate adaptive planning and the
ability to adapt to changing requirements. In many agile
methodologies, the concept of a “user story is used. A user
story is an activity, event, or item that is part of the overall
Software process, representing Software development work to
be done, typically from the perspective of a user of the system.

FIG. 1 illustrates a system diagram demonstrating the inte
gration of distributed estimation with a centralized process.
This system has particular application to the insurance indus
try as insurance companies are often characterized as large,
complex, historically constrained environments. System 100
may be used for monitoring software development using
story points according to an embodiment. A story point is a
value which represents the amount of effort needed to com
plete the associated user story. As shown in FIG. 1, a product
owner 120 interacts with the insurance development group
110 using a network 190, such as the internet. Product owner
120 may be a customer, for example. Any data provided by or
to the product owner 120 passes through the internet 190 to
the insurance development group 110. Similarly, developers
130 may provide or receive information via the internet 190 to
the insurance development group 110. The project manager
140, which includes the responsibilities of scrummaster
under other methodologies, may pass data to the insurance
development group 110 via the internet 190. Each product
owner 120, developer 130, and project manager 140 may
communicate with one another via internet 190. The insur
ance development group 110 may be configured to commu
nicate with each product owner 120, developer 130, and
project manager 140 via internet 190. The development sys
tem 100 includes a network interface 155 to enable the com
munication with one or more product owner 120, developer
130, or project manager 140.

System 100 includes one or more central processing units
(CPU)150, network interface units 155, input/output control
lers 160, system memories 170, and storage devices 180.
Each CPU 150, network interface unit 155, input/output con
troller 160, system memory 170, and storage device 180 is
communicatively coupled via bus 165.

System memory 170 includes random access memory
(RAM) 172, read only memory (ROM) 174, and one or more
caches. Storage devices 180 may include one or more appli
cations 184, an operating system 182, and one or more data
bases 186. Storage devices 180 may take the form of, but are
not limited to, a diskette, hard drive, CD-ROM, thumb drive,
hard file, or a Redundant Array of Independent Disks (RAID).
System 100 is accessed via network 190 using a mainframe,
thin client, personal computer, mobile device, pad computer,
or the like. Information processed by CPU 150 and/or oper
ated upon or stored on storage devices 180 and/or in memory
170 may be displayed to a user through a user device (not
shown).
The software development and program flow may include

particular roles, or classes of people, comprising developers
130. For example, certain people may be dedicated to pro
ducing the product, or the objective of the project. Product
owner 120 represents the customers, which may be the insur
ance company or the customer of the insurance company, for
example, and is accountable for ensuring that the developers
130 deliver value to the business. Product owner 120 writes
customer-centric items (typically user stories), prioritizes
them, and adds them to the product backlog. During Software
development there may be one product owner 120, and while

10

15

25

30

35

40

45

50

55

60

65

4
product owner 120 may also be a developer 130, it may be
beneficial that product owner 120 not be combined with the
project manager 140.
The developers 130 are responsible for delivering poten

tially shippable product increments at the end of each devel
opment stage, referred to as a sprint. Developers 130 may be
made up of 3-9 people with cross-functional skills who do the
actual work including analyze, design, develop, test, techni
cal communication, document, and the like. Developers 130
are self-organizing, even though developers 130 may inter
face with project management organizations.
A meeting of the parties involved, sometimes referred to as

a scrum, is facilitated by a project manager 140, who is
accountable for removing impediments to the ability of the
team to deliver the sprint goal/deliverables. Project manager
140 is not in charge of the software development, but may act
as a buffer between the developers 130 and any distracting
influences. Project manager 140 ensures that the process
flows as intended. Project manager 140 is the enforcer of
rules. A key part of project manager's 140 role is to protect
developers 130 and keep them focused on the tasks at hand.
The role has also been referred to as a servant-leader to
reinforce these dual perspectives.

Stakeholders (e.g., customers or vendors) (not shown) are
the people that enable the project and for whom the project
produces the agreed-upon benefits that justify its production.
Stakeholders are only directly involved in the process during
the sprint reviews, discussed herein. Managers (not shown)
are people that control the environment.

Operationally, system 100 monitors and records interac
tions between and among insurance development group 110.
product owner 120, developers 130, and project manager 140.
The specific interactions may be described herein with
respect to FIGS. 2-8.

FIG. 2 illustrates a flow 200 demonstrating the integration
of distributed estimation with a centralized process. This
process may adapt the agile and waterfall approaches for use
together. Specifically, FIG. 2 illustrates project staffing 210
that is provided as an input to storyboarding 220. Iterations
and pipelines 230 may be coupled to storyboarding 220.
Storyboarding 220 outputs to estimate 240. After one or more
iterations of storyboarding 220, estimation 240, centralized
calibration 250, and adjusting 260, storyboarding outputs to
product backlog 225. Product backlog outputs to software
development 280. Estimate 240 outputs to financial gover
nance 270 and centralized calibration 250. Centralized cali
bration 250 outputs to adjustments 260. Adjustments 260
input back to storyboarding 220.
The above processes are performed by distributed experts

and/or a centralized process. Distributed experts perform
project staffing 210, storyboarding 220, iterations and pipe
lining 230, product backlog 225, and at least a portion of each
of adjustments 260 and estimate 240. The other portions of
adjustments 260 and estimate 240, and centralized calibration
250, financial governance 270 and software development 280
are part of the centralized process.

Project staffing 210 includes creating developers 130,
project manager 140 and product owner 120, and assigning
functions and tasks to each created role within the software
development.

Project staffing 210 includes creation of a team of devel
opers 130. The team is established for the specific tasks to be
performed. Such as to perform estimation 240. The team may
be limited in size, such a being 3-9 members, for example.
Multiple independent or interactive teams may act simulta
neously, such as the approach known in other methodologies
as Scrum-of-scrums, for example. Team members are selected

US 9,134,999 B2
5

for their respective expertise in software development across
the centralized process roles, including project management,
business analysis, Software development, quality assurance,
or production operations, for example. Even though the team
is formed based on the tasks of the centralized process, the
team may be charged with disregarding the central process
roles when performing storyboarding 220, iterations and
pipelining 230, estimation 240, and adjustments 260. In esti
mation 240, the team members may consider any aspects of
what is needed to deliver the specified work product.
A product owner 120 may also be selected in project staff

ing 210. The product owner 120 is trained on the product
owner 120 sub-process. That is, the product owner 120 may
be trained on the specifics of the software development and
may interact with the insurance development group 110 to
understand and aid in developing the Software for the insur
ance customer. The product owner 120 may be responsible for
interacting with insurance group 110 on a continual basis for
the duration of the project.

Additionally, project manager 140 may be selected in
project staffing 210. Project manager 140 may be accountable
for removing impediments to the operations performed by
developers 130 and may act as a buffer between the team and
any distracting influences. Project manager 140 may be the
enforcer of rules. That is, project manager 140 protects the
developers 130 and keeps them focused on the tasks at hand.

While the scrum process in the software industry generally
recognizes the power and responsibility of the product owner
120, flow 200 modifies this standard in order to operate and
account for the large, complex, historically-constrained envi
ronment of the insurance company and industry. Such modi
fications include accountabilities to larger stakeholder com
munities, greater financial rigor, integrating the competing
business priorities of multiple constituencies, and constrain
ing the current product development work based on the limi
tations of other systems caused by the complexity of insur
ance logic and the nature of change-sensitive infrastructure
resulting from the diversity of systems evolved from hetero
geneous insurance products. During the project, the product
owner 120 may continually execute activities and manage
decision making responsibilities. These decision making
responsibilities may include setting backlog priorities for the
developers 130. Backlog priorities may be set quickly and
unambiguously. The product owner 120 may make decisions
for the developers 130 based on priorities of the business and
organization, and may be willing to accept lower-quality
designin exchange for more business functionality. Similarly,
based on an understanding of the tasks of the developers 130,
the product owner 120 may be responsible for working within
the insurance company to bring together individuals and
resources with knowledge of the business problem being
solved by the software being developed. The product owner
120 may align the priorities of the work being done by the
developers 130 to the priorities stated in the organizational
cost benefit analysis (CBA) and project charter for the project
and the priorities set through the centralized process.
The function of the product owner 120 may be assigned in

project staffing 210. For example, product owner 120 may
maintain communication and coordination responsibilities
with developers 130 and insurance group 110. The product
owner 120 directs the development to follow a centralized
process. This centralized process enables the realities discov
ered by the distributed experts that make initial assumptions
infeasible to be overcome by modification of the assump
tions. Product owner 120 and/or project manager 140 may
handle the changes in control process.

10

15

25

30

35

40

45

50

55

60

65

6
Product owner 120 collaborates with the larger community

to understandall priority drivers and communicate decisions
to the larger community in the centralized process, while
balancing the competing forces to determine the final priori
tization of product backlog 225. The product owner 120 may
be responsible for adjusting the priorities of the product back
log225 and iterations and pipelining 230 based on the input of
the developers 130 based on their understanding of technol
ogy constraints. The product owner 120 may work with busi
ness leaders to understand the objectives of the larger orga
nization and ensure proper prioritization of the product
backlog 225 accordingly. The product owner 120 may man
age expectations throughout the community of the central
ized process when priorities shift.

Storyboarding 220 includes the decomposition of the soft
ware development and program flow from the larger user
story to Smaller user stories for placement in the product
backlog 225. The project manager 140 collaborates with
product owner 120 and developers 130 in a series of story
boarding sessions. In these storyboarding sessions, they
incorporate the user stories into the storyboard. The product
owner 120 controls the content of user stories, which reflect
the work to be done by the developers 130 during the project.
But it is the developers 130 who conduct the estimate 240 of
the work to perform a user story. Such an estimation may be
quantized by assigning a value from a numeric sequence,
Such as a Fibonacci sequence, to each task based on the
amount of work needed to complete the task.
The product owner 120 and developers 130 may execute

the iterations and pipelining 230. Iterations and pipelining
230 is generally performed in parallel with generating the
content in storyboarding 220 and creating the product back
log 225 and/or may be performed after the product backlog
225 is substantially completed.

Iterations and pipelining 230 may include the product
owner 120 and developers 130 breaking down these tasks into
two levels. One level may be a decomposed to iterations. In
this decomposition, the work may be subdivided into smaller
and Smaller parts until no unit of work is more than two weeks
of time, and the average unit of work is about two days of
time. The second level may include decomposition to a pipe
line. In this decomposition, the units of work may be decom
posed according to the type of work, Such that the sequencing
of the work is offset across time. Such as limiting a pipeline
step to no more than two days of total person time, for
example. The level of decomposition performed in this sub
process is integrated back into storyboarding 220 to allow the
user stories to be in Smaller units that match those produced
by iterations and pipelining 230.
The storyboard from storyboarding 220 may be generated

from two perspectives. First, the storyboard may be created
by the developers 130 and product owner 120 in a work
centric order, and then may be transformed into a priority
centric order. The work-oriented storyboard may be created
by the product owner 120 and developers 130 by breaking the
work down into roughly 10 to 20 user stories that are repre
sented horizontally across a work space. These user stories
may be the top-level user stories. Each top-level user story
may be decomposed into a vertical set of user stories that
compose the top-level user story. The decomposition may
proceed until the product owner 120 and developers 130
determine the user stories are sufficiently decomposed. Once
all of the top-level user stories are decomposed into vertical
columns, each may be given a priority based on the Fibonacci
sequence, for example. Once all the decomposed user stories
have been assigned Fibonacci numbers, the decomposed user
stories may be transferred to the time-oriented storyboard.

US 9,134,999 B2
7

Second, a time-oriented storyboard may be created. The
time-oriented storyboard may be based on user stories that are
to be executed in priority order. The top-level decomposition
may be a set of time-series events known as sprints. This
time-oriented Storyboard may be created by moving the more
critical user stories in the work-centric storyboard to early
sprints, and the less critical user stories to later sprints. In this
way, the parts of the user story are examined, instead of a
focus on the big user story as is the case with the work-centric
storyboard. For example, while a big user story may be impor
tant as a whole, its parts may not be. Those less important
parts may be spread out to later sprints when organized in
product backlog 225. This priority order may be repeated as
Smaller stores are made even Smaller, for example. The
decomposed work-oriented user stories may be transferred to
the time-oriented storyboard, but instead of their original
order, the work-oriented user stories may be ordered accord
ing to the priority established by the product owner 120.

Estimation 240 may include assigning scaled estimates to
each user story associated with the Software development.
This may include assigning a number to the user story that is
associated with the time and difficulty in completing the user
story. Estimation 240 may be a local variable. That is, esti
mation 240 may be only within a given project or user story,
for example. Or estimation 240 may be a global variable in
that the task in a user story in one project is assigned a certain
number or weight because the tasks corresponds in difficulty
and time to another user story in another project assigned the
same number or weight.

Centralized calibration 250 may be the process of ensuring
that Software development project estimation is being done
consistently throughout an organization. Centralized calibra
tion is centralized in that the standards and practices followed
are published and mandated by a central authority in the
organization. Calibration is the process of adjusting informa
tion, interpretations, understanding, and opinions of those
involved until there is a reasonable confidence that all parties
are using the same criteria for judgment. The actual metrics
being calculated are the time and dollar estimates provided by
the software development teams. The expertise of the soft
ware development teams may be augmented by staff from the
centralized calibration practice whose role is specifically to
help everyone estimate consistently.

The top-most user story and the top-level user stories may
be provided as input to the centralized calibration 250 from
estimate 240. The top-most user story may describe the entire
project. The top-level user stories are the 10 to 20 user stories
that, when completed, may fulfill the top-most user story and
evidence delivery of the project.
The distributed experts may be responsible for forcing the

top-level user story count into the 10 to 20 range by merging
or splitting other user stories in a manner meaningful to the
project. According to estimation 240, the top-level user sto
ries may have Fibonacci story points as viewed from the
distributed experts point of view.
The output of the centralized calibration 250 may include

top-level user stories returned to the distributed experts and
the developers 130 with the original story points as well as the
addition of centralized story points. The centralized calibra
tion 250 may include a brief rationale for any story point
discrepancies, as there may be some variation between the
distributed expert story points and the centralized story
points. Such discrepancy may be discerned in the relative
Fibonacci positions.
As shown in FIG. 2, adjustments 260 provided through the

loop to storyboarding 220 through an operations loop 290.
The flow of operations loop 290 may be repeated with the

10

15

25

30

35

40

45

50

55

60

65

8
estimation 240 operating with adjustments 260. Estimation
240, including adjustments 260, may operate with the top
level user stories with the centralized story points run through
estimation 240 by the distributed experts. Discrepancies are
in the operations loops are expected and are the reason why
the process is iterative.
Any discrepancies in estimation 240 may be addressed by

the distributed experts by accepting the findings of the cali
bration process 250 and adjusting the story points to the
centralized story points, and/or reviewing the rationale of the
centralized process experts and exchanging information to
enable the distributed experts and the centralized process
experts to reach an agreement on a new estimate.
The adjustment 260 may be fed back into the centralized

calibration process 250 until the total adjusted difference is
Zero, or meets a threshold that is agreed upon by all develop
ers 130, such as an absolute value maximum of one for the
adjusted difference per user story, for example. The distrib
uted experts may utilize their calibration skill to propagate the
same magnitude to all user stories below the top-level user
stories using the same process described herein, but repeating
to whatever depth of calibration is deemed necessary by the
distributed experts or the centralized process.

Financial governance 270 may include the modeling and
meeting of financial benchmarks associated with the project.
In order to provide financial governance, the estimates may be
feed into the centralized process.

Software development 280 may be fed from the product
backlog 225 and may be completed when the product backlog
is sent through the normal centralized process Software devel
opment lifecycle (SDLC).

FIG. 3 illustrates an example of iterations and pipelines
230 described hereinabove. Specifically, FIG. 3 illustrates a
complete solution that is broken down into a set of iterative
Solutions and then into a set of pipeline solutions. In this
illustration, iterations and pipelines 230 analyzes the com
plete solution and all of the functionality 310. This function
ality 310 may then be decomposed into, for example, seven
iterations 320.1,320.2,...,320.7 (collectively 320), which is
shown as the iteration solution. Each iteration 320 is then
decomposed into a pipeline solution that includes data 330,
logic 340, and present 350. For example, iteration 320.1 may
be decomposed into data 330.1, logic 340.1, and present
350.1. In this way the functionality 310 is decomposed into an
iterative solution 320 and a pipelined solution 330,340,350.
This decomposition breaks the problem down and the solu
tion from a technical perspective so that Smaller user stories
may be used, for example. The combination of the techniques
discussed herein provides a decomposition that breaks a
problem down into sprintable units, and uses a pipeline for
processing these sprintable units to provide a sequence for
optimizing throughput.
By way of non-limiting example, assume a business area

has the need to help a customer get an insurance quote. This
is a large amount of system functionality 310 in FIG. 3. Such
functionality 310 is too large to execute as a unit, so the team
must decompose this into Smaller units of work. Each Smaller
unit of work is represented by one of the seven horizontal bars
in iterations 320. Such smaller units constitute user stories
and may be for example, “submit personal information.”
“submit vehicle information.” “get prior carrier information.”
“clarify missing information.” and the like. These smaller
units of workare now capable of being executed in an iterative
fashion and delivered to the business areas for review on a
shorter time basis, typically one to three weeks. However, the
user stories in 320 may still be too large from a technical
perspective to be turned into Software as a unit, so the team

US 9,134,999 B2
9

must further decompose the user stories into their natural
technical boundaries, one example of which is data 330, logic
340, and present 350. In this example, the software work falls
naturally across the database 330, the logic 340, and the
presentation 350, so the technical team takes each user story
in iterations 320, and breaks it into three component parts of
data 330, logic 340, and present 350. Then to handle the
sequential dependency, the several items of work are offset
across the iterations 320. For example, iteration #1 may only
perform the data work for “submit personal information.”
Iteration #2 may perform the data work for “submit vehicle
information, the application logic for “submit vehicle infor
mation, and so on, such that there are iterations across data
330, logic 340, and present 350, but enabling a staggering of
the work.

FIG. 4 illustrates the decomposition of the software devel
opment and program flow from the larger user story to Smaller
user stories for placement in product backlog 225 that may
occur during storyboarding 220. User stories are generally
tasks that need to be performed in order to achieve a larger
goal. User stories may be referred to as items and/or tasks as
well. As may be seen in the uppermost portion of FIG. 4, the
main story 410 is decomposed into several big user stories
415, for example four. Each of these big user stories 415 is
then decomposed further into smaller user stories 420. Each
of the smaller user stories 420 are associated with the big
story 415 from which it is derived. This association is evi
denced by the vertical alignment under the big story 415 from
which the smaller story 420 derives. Each of the smaller user
stories 420 is assigned an identifier that identities the big story
415 and provides the order of the smaller user stories 420 that
derive from that big story 415. Additionally, each smaller
story 420 is assigned a designation of the priority. In this case,
the priority is designated as H high, M-medium, and
L. low. For example, a smaller story 420 is identified as # 1 a
(H). This means that the smaller story 420 derives from big
story #1, with the “a” representing that it is the first smaller
user story to derive from big story #1, and that this smaller
story 420 has an “H” priority.
As shown in FIG.4, the big user story may decompose into

any number of smaller user stories. The depiction of FIG. 4
illustrates big user stories 415 decomposing into 2, 3, or 4
smaller user stories 420, although any number of smaller user
stories 420 may be used. The decomposition of user stories
occurs under the larger user story to enable the discussion and
thinking to focus on one user story at a time. While breaking
the main story 410 down by thinking of one user story at a
time, to execute the user stories 420 it is necessary to order the
user stories 420 based on priority. This enables the process to
operate by moving more critical items, higher priority user
stories, earlier in the process, and the less critical items, lower
priority user stories, later in the process.

This decomposition of the main story 410 into big user
stories 415 and then smaller user stories 420 may be trans
formed into a product backlog 225 as shown in the bottom
portion of FIG. 4. This transformation to product backlog 225
may include several iterations 430. Product backlog 225 is
shown having five iterations 430, for example. Each iteration
430 may include any number of smaller user stories 420 that
are grouped based on priority to achieve the completion of
highest priority user stories first. Each iteration may be
defined to take a certain amount of time to complete. Such as
two days or a week, for example. The user stories may be
grouped by priority using the time constraint of the iteration
when organizing the iterations. The priority organization 435
of the smaller stories is shown in FIG. 4. That is, during
iteration #1, smaller story #1a and smaller story #2a may both

5

10

15

25

30

35

40

45

50

55

60

65

10
be performed as each has a high priority and can be completed
in the requisite iteration time. Iteration #2 includes smaller
story #3a, which completes the high priority user stories, and
middle priority user stories #1b and #2b. Story #3b relates to
iteration #2 and also has a medium priority but cannot fit into
iteration #2 because iteration #2 would exceed the time con
straint. Therefore, smaller story #3b is pushed down to itera
tion #3, as illustrated in FIG. 4.

Using this approach, it is possible that important user sto
ries that are main user stories 410 or big user stories 415 may
have decomposed with smaller user stories 420 that have
lowerpriority even if the big user stories 415 and/or main user
stories 410 have high priorities. The less important portions of
the decomposed user stories may be spread out until later in
the process when organized in the product backlog 225. This
concept may repeat itself as decomposition is performed at
smaller and smaller levels of user stories.
The decomposition of stories may facilitate communica

tion between product owner 120, developers 130, project
manager 140, and insurance development group 110. Priority
of user stories may be assigned a number from a numerical
sequence, such as one of the Fibonacci numbers as discussed
above, based on agreement of participating parties. If full
agreement cannot be reached, a consensus of participating
parties may be used. The user stories and priorities are esti
mated based on known information. The goal of the assigned
numbers is to geta relative magnitude of the effort required to
complete the user story and not necessarily an exact time for
completion. One user story may be chosen as a baseline and
other user stories may be estimated relative to the baseline
user story.

Developers 130 may spend time maintaining and updating
product backlog 225. This may include estimating the exist
ing backlog using the numbers of the numerical sequence,
refining the numbers assigned to individual user stories, and
continuing to break larger user stories into Smaller user sto
ries.

FIG. 5 illustrates a flow diagram of the centralized calibra
tion 250. The estimation calibration 500 may include six steps
including creating an estimation using project estimation
510, share criteria 520, create project estimate 530, share
estimates 540, complete gauge R&R calibration 550, and
review discrepancies 560. Creating an estimation using
project estimation 510 may include creating estimation using
project estimation, such as by using user stories, and assigned
numbers, for example. Sharing criteria 520 may include shar
ing decision making criteria with estimation experts. Creating
project estimates 530 may include creating a project estimate
based on a decision making criteria. Sharing estimates 540
may include providing both estimates with decision making
criteria to calibration expert. Complete gauge R&R calibra
tion 550 may include any measurement system analysis
designed experiment that seeks to identify the components of
variation in the measurement. Review discrepancies 560 may
include acknowledging discrepancies and addressing root
causes of the discrepancies to accommodate corrective
changes.
The experts that may be involved in the estimation calibra

tion include centralized experts and distributed experts. Cen
tralized experts may include a group of people with expertise
in project development and estimation that are part of the
centralized process. Centralized experts may estimate all the
projects that move through the centralized calibration pro
cess. Distributed experts are those that have their project
move through the centralized calibration process. Centralized
experts may provide a global view, while distributed experts
may provide a view localized for a given project, for example.

US 9,134,999 B2
11

The calibration shown in FIG. 5 is the calibration of the
top-level user stories. The process may begin by creating an
estimation 510 which may include assigning centralized story
points to every top-level user story as discussed with respect
to storyboarding 220 and estimation 240, for example. The
centralized process may be calibrated across many projects
being calibrated and may assign other values, or modify the
values assigned to user stories. The centralized user stories
may be an estimate of the cost of each top-level user story
relative to every other top-level user story going through the
centralized calibration, or that has gone through the central
ized calibration and is part of the reference library. The top
level user story reference library is a collection of top-level
user stories that have gone through the centralized calibration
previously and may be used for the purpose of training and
validating both the distributed experts and centralized
experts’ ability to assign values to user stories accurately. The
library may be empty on day one, or may be primed with a few
historical cases. The library may be grown by taking useful
top-level user stories from projects moving through the pro
CCSS,

FIG. 6 illustrates the gauge R&R calibration of FIG. 5. As
illustrated in FIG. 6, gauge R&R calibration 550 may include
determining the correct attribute values that are to be used at
step 610. This determination may be made by a calibration
expert and may be evidenced as yes/no, pass/fail, for
example. The calibration 550 may include determining the
proper answer at step 620. That is, the calibration expert may
determine what the correct answer is. At step 630, calibration
550 may assign the samples in a different order and have the
samples scored again. At step 640, calibration 550 may
include running gauge R&R calculations. The present
description includes a description focusing on R&R. Any
known process may be used and R&R is provided by example
only. R&R stands for repeatability and reproducibility and
stems from Leanor SIXSigma domain. R&R allows the same
person to repeat an estimate given a similar sample and
another estimator may reproduce the same result as the
experts, thereby providing repeatability and reproducibility.
At step 650, calibration 550 may include highlighting the
preciseness of the match and discrepancies of the attribute
values on which the calibration is performed.

FIG. 7 illustrates an output of the centralized calibration
250 and the further description associated with FIG. 5. As
shown in FIG. 7, Row 1 identifies the Fibonacci numbers,
Row 2 identifies the ordered position of the Fibonacci num
bers, Row 3 identifies the story points from the distributed
experts, Row 4 identifies the story points from the centralized
process, Rows 5 and 6 identify the Fibonacci positions of the
two areas, Row 7 identifies the difference between the two
story points, and Row 8 identifies the difference minus the
median positional difference. That is, Row 8 is the number
that shows the actual difference between the estimates. The
expectation is the actual values from the Fibonacci sequence
used by the two groups may be very different, thus the need to
emphasize the adjusted difference based on their relative
positions.
As an example, in calibrating the insurance quote project

example discussed previously, assume the user story 'get
prior carrier information' is shown as User Story #3 in FIG.7.
For that user story, the distributed experts assigned it an
estimate of 21 story points. This is shown on row 3. The
centralized group assigned it 144 story points. This is shown
on row 4. In order to calibrate assigned values, the median
story points for most groups should be known. The Fibonacci
numbers themselves cannot be directly calibrated, and
instead calibrate may be based on Fibonacci position. By

10

15

25

30

35

40

45

50

55

60

65

12
determining the median, the estimates may be normalized.
This is illustrated in rows 5 through 8. In row 5, the value of
7 is used because that is the Fibonacci position of the
Fibonacci number 21. In row 6, the value of 11 is used
because that is the Fibonacci position of the Fibonacci num
ber 144. A conversion on the column labeled Median may be
performed, converting the values 8 and 144 to 5 and 11
respectively. The positional difference between the teams is
now needed to determine the overall agreement. This posi
tional difference may be performed in row 7 which is the
centralized position minus the distributed expert position. For
each cellon row 7, subtract the value in the Median column on
row 7 and enter this value in row 8. Any non-zero value on
Row 8 must be brought into alignment by the two teams
calibrating their estimates. The calibration may include dis
cussions, the exchange of information, use of formal author
ity or whatever else is needed. The mechanics of such work
are too highly variable to be dictated, so they are only judged
by outcome. The outcome is that Row 8 is all Zeros, or if the
teams decide, some threshold of tolerance. Such as between
-1 and 1, for example. The calibration concludes when Row
8 reaches Such a value or within a tolerance of such a value.

FIG. 8 illustrates a process 800 of financial governance 270
associated with the distributed estimation with a centralized
process. Process 800 includes initial analysis 805 that include
user stories that can be well predicted and infrastructure 802
that includes user stories that have lead time. For example,
infrastructure 802 may include requests for servers. Initial
analysis 805 and infrastructure 802 provide input for the
storyboard refinement 810. This storyboard refinement 810
may occur as discussed herein, including breaking down the
user story into sprintable items and assigning the broken
down user story a priority and an assigned value associated
with effort required to complete the user story. The user story
refinement 810 provides input to the general projections 820
that includes standard project estimation and parameters. The
projections 820 provide input to an estimate 830. This esti
mate 830 activates a first financial gate 840. First gate 840
may be based on completion of infrastructure 802 and
completion of the general projections 805. First gate 840 may
create an initial SAD with ranges and not points. After pass
ing the first gate 840, a series of sprints 220 (shown as four
sprints but any number may be performed) may be performed
to complete smaller user stories. The output of each of the
sprints may be provided to an actual burndown 850.
Burndown 850 may include tracking the amount of work

remaining across time. Burndown 850 may clarify project
trending and provide rapid feedback related to adjustments
260. Burndown 850 may enable variation in the product back
log225. Such as by removing functionality, to stay or get back
on track, for example.
Burndown 850, in turn, feeds the trend to backlog 860 that

provides a concrete estimate by establishing a trend and
extending the trend to backlog 860. An estimate 870 may be
achieved from the burndown 850 and trend to backlog 860
information. This estimate may be the input into a second
financial gate 880. Since some work has been completed in
the earlier sprints, a verification of assumptions of the project
may be made empirically, and an adjustment of the priority
and estimates may be done. The project manager may lead
through the first gate 840 and participate though the second
gate 880. After refactoring at the second gate 880, additional
sprints may be performed until completion of the project. As
shown sprints 5-12 . . . n may be performed.
The project developers 130 may be aware of when the

centralized process requires the estimate to go through a
financial gate. Infrastructure may be estimated independently

US 9,134,999 B2
13

using the standard centralized process. The project develop
ers 130 perform the normal work of storyboarding 220 as
outlined above. The developers 130 and project manager 140
work to map the Fibonacci relative numbers to physical time
of days, weeks, months, and years—whichever units of time
make the most sense. This may be performed by considering
the mix of skills of developers 130. The time estimates are
provided to financial governance. The developers 130 per
form an incremental software development effort for several
sprints as a means of testing the rate at which the software is
built. The actual rate of build is tested against the initial
estimates. Any difference is trended to the backlog 225. That
is, a ratio is determined for the work attempted that shows
what was planned to be done and what was actually done.
That factor is applied to all remaining work in the product
backlog 225. For example, if the test work required twice as
much time as expected, then the product backlog 225 esti
mates are all multiplied by two to account for this new infor
mation. The trended numbers are submitted to the financial
governance portion 270 of the centralized process as the final
project estimate. Re-trending and re-estimating may be
repeated as many times as needed until it stabilizes.

FIG. 9 shows an example computing device 910 that may
be used to implement features described above with reference
to FIGS. 1-8. The computing device 910 includes a processor
918, memory device 920, communication interface 922,
peripheral device interface 912, display device interface 914,
and data storage device 916. FIG. 9 also shows a display
device 924, which may be coupled to or included within the
computing device 910.
The memory device 920 may be or include a device such as

a Dynamic Random Access Memory (D-RAM), Static RAM
(S-RAM), or other RAM or a flash memory. The data storage
device 916 may be or include a hard disk, a magneto-optical
medium, an optical medium such as a CD-ROM, a digital
versatile disk (DVDs), or Blu-Ray disc (BD), or other type of
device for electronic data storage.
The communication interface 922 may be, for example, a

communications port, a wired transceiver, a wireless trans
ceiver, and/or a network card. The communication interface
922 may be capable of communicating using technologies
such as Ethernet, fiber optics, microwave, xDSL (Digital
Subscriber Line), Wireless Local Area Network (WLAN)
technology, wireless cellular technology, and/or any other
appropriate technology.
The peripheral device interface 912 is configured to com

municate with one or more peripheral devices. The peripheral
device interface 912 operates using a technology Such as
Universal Serial Bus (USB), PS/2, Bluetooth, infrared, serial
port, parallel port, and/or other appropriate technology. The
peripheral device interface 912 may, for example, receive
input data from an input device Such as a keyboard, a mouse,
a trackball, a touch screen, a touch pad, a stylus pad, and/or
other device. Alternatively or additionally, the peripheral
device interface 912 may communicate output data to a
printer that is attached to the computing device 910 via the
peripheral device interface 912.
The display device interface 914 may be an interface con

figured to communicate data to display device 924. The dis
play device 924 may be, for example, a monitor or television
display, a plasma display, a liquid crystal display (LCD),
and/or a display based on a technology Such as front or rear
projection, light emitting diodes (LEDs), organic light-emit
ting diodes (OLEDs), or Digital Light Processing (DLP). The
display device interface 914 may operate using technology
such as Video Graphics Array (VGA), Super VGA (S-VGA),
Digital Visual Interface (DVI), High-Definition Multimedia

10

15

25

30

35

40

45

50

55

60

65

14
Interface (HDMI), or other appropriate technology. The dis
play device interface 914 may communicate display data
from the processor 918 to the display device 924 for display
by the display device 924. As shown in FIG. 9, the display
device 924 may be external to the computing device 910, and
coupled to the computing device 910 via the display device
interface 914. Alternatively, the display device 924 may be
included in the computing device 900.
An instance of the computing device 910 of FIG.9 may be

configured to perform any feature or any combination of
features described above as performed. Alternatively or addi
tionally, the memory device 920 and/or the data storage
device 916 may store instructions which, when executed by
the processor 918, cause the processor 918 to perform any
feature or any combination of features described above as
performed. Alternatively or additionally, each or any of the
features described above as performed may be performed by
the processor 918 in conjunction with the memory device
920, communication interface 922, peripheral device inter
face 912, display device interface 914, and/or storage device
916.

FIG. 10 shows a tablet computer 1010 that is a more spe
cific example of the computing device 910 of FIG. 9. The
tablet computer 1010 may include a processor (not depicted),
memory device (not depicted), communication interface (not
depicted), peripheral device interface (not depicted), display
device interface (not depicted), storage device (not depicted),
and touch screen display 1024, which may possess character
istics of the processor 918, memory device 920, communica
tion interface 922, peripheral device interface 912, display
device interface 914, storage device 916, and display device
924, respectively, as described above with reference to FIG.9.
The touch screen display 1024 may receive user input using
technology Such as, for example, resistive sensing technol
ogy, capacitive sensing technology, optical sensing technol
ogy, or any other appropriate touch-sensing technology.
As used herein, the term “processor broadly refers to and

is not limited to a single- or multi-core processor, a special
purpose processor, a conventional processor, a Graphics Pro
cessing Unit (GPU), a digital signal processor (DSP), a plu
rality of microprocessors, one or more microprocessors in
association with a DSP core, a controller, a microcontroller,
one or more Application Specific Integrated Circuits
(ASICs), one or more Field Programmable Gate Array
(FPGA) circuits, any other type of integrated circuit (IC), a
system-on-a-chip (SOC), and/or a state machine.
As used to herein, the term “computer-readable medium’

broadly refers to and is not limited to a register, a cache
memory, a ROM, a semiconductor memory device (such as a
D-RAM, S-RAM, or other RAM), a magnetic medium such
as a flash memory, a hard disk, a magneto-optical medium, an
optical medium such as a CD-ROM, a DVDs, or BD, or other
type of device for electronic data storage.

Although the methods and features are described above
with reference to the example system 100 of FIG. 1 for a
system and method of distributed estimation with a central
ized process, using two approaches that are adapted together,
the methods and features described above may be performed,
mutatis mutandis, using any appropriate architecture and/or
computing environment. Although features and elements are
described above in particular combinations, each feature or
element can be used alone or in any combination with or
without the other features and elements. For example, each
feature or element as described above with reference to FIGS.
1-10 may be used alone without the other features and ele
ments or in various combinations with or without other fea
tures and elements. Sub-elements of the methods and features

US 9,134,999 B2
15

described above with reference to FIGS. 1-10 may be per
formed in any arbitrary order (including concurrently), in any
combination or Sub-combination.

What is claimed is:
1. A system for monitoring Software development and

project flow in the insurance industry using user stories, the
system comprising:

a communication interface that receives, via one or more
networks, information included in communications
among distributed experts following a centralized pro
CeSS;

a processor and memory that are integrated to:
identify from a monitored communication a plurality of

user stories for completion during Software develop
ment,

estimate a priority of each of the plurality of user stories:
assign a value to each of the plurality of user stories, the

assigned value represents an amount of effort needed
to complete a user story;

store each of the plurality of user stories and associated
priority and value in the memory as a product back
log:

calibrate a difference in the assigned value of each of the
plurality of user stories by comparing a centralized
position of each of the plurality of user stories and an
associated Fibonacci position, and iteratively adjust
ing the Fibonacci position of each of the plurality of
user stories based on the difference between the cen
tralized position and the assigned value as compared
to a median value until the difference is below a
threshold; and

update a product backlog of user stories with the user
story's associated calibrated assigned value; and

a display device for displaying the status of the Software
development and project flow based on a plurality of
user stories remaining in the product backlog as com
pared to a plurality of user completed stories.

2. The system of claim 1 wherein the associated priority of
each of the plurality of user stories is updated based on feed
back from the completed story points in the product backlog.

3. The system of claim 1 wherein the communication
among a product owner, at least one developer, and a project
manager occurs at at least one planning meeting.

4. The system of claim 1 wherein the value is one of a
numerical sequence.

5. The system of claim 1 wherein at least one of the user
stories included in the backlog is completed during a sprint.

6. The system of claim 1 wherein one of the plurality of
user stories provides a basis for the respective priority asso
ciated with each of the other of the plurality of user stories.

7. The system of claim 1 wherein at least one of the plu
rality of user stories in the product backlog is modified.

8. The system of claim 1 wherein at least one of the priori
ties associated with the plurality of user stories in the product
backlog is modified.

9. The system of claim 1 wherein the distributed experts
include at least one of a product owner, at least one developer,
and a project manager.

10. A method of monitoring software development and
project flow in the insurance industry using user stories, the
method comprising:

receiving, via a communication interface, via one or more
networks, information included in communications
among a product owner, at least one developer, and a
project manager,

10

15

25

30

35

40

45

50

55

60

65

16
identifying, by a processor, from the monitored communi

cation a plurality of user stories for completion during
the development;

assigning, by a processor, each of the plurality of user
stories a priority and a value determined by the effort
required to complete the respective user story and stor
ing the user story and associated priority and value in the
memory as a product backlog:

at the processor, accessing the memory to read the product
backlog and associated priorities and values and select
ing at least one user story and associated priority and
value from the product backlog for building based on the
associated priority and value;

calibrating, at the processor, a difference in the value of
each of the plurality of user stories by comparing a
centralized position of each of the plurality of user sto
ries and an associated Fibonacci position, and iteratively
adjusting the Fibonacci position of each of the plurality
of user stories based on the difference between the cen
tralized position and the value as compared to a median
value until the difference is below a threshold;

upon completion of any of the user stories included in the
backlog, updating, by the processor, the product backlog
in the memory; and

at the processor, iterating the selecting and updating based
on the monitored communication that evidences that
user stories are being completed and that additional
story points are selected for inclusion in the backlog; and

displaying, on a display device, the backlog as selected by
the processor from the product backlog and the status of
the software development and project flow based on user
stories remaining in the product backlog as compared to
the user stories completed from the product backlog.

11. The method of claim 10 wherein the associated priority
of each of the plurality of user stories is updated based on
feedback from the completed user stories in the backlog.

12. The method of claim 10 wherein the communication
among a product owner, at least one developer, and a project
manager occurs at at least a planning meeting.

13. The method of claim 10 wherein the value is one of a
numerical sequence.

14. The method of claim 10 wherein at least one of the user
stories included in the backlog is completed during a sprint
process.

15. The method of claim 10 wherein one of the plurality of
user stories provides a basis for the respective priority asso
ciated with each of the other of the plurality of user stories.

16. The method of claim 10 wherein at least one of the
plurality of user stories in the product backlog is modified.

17. The method of claim 10 wherein at least one of the
priorities associated with the plurality of user stories in the
product backlog is modified.

18. A non-transitory computer-readable medium having
processor-executable instructions stored thereon which,
when executed by at least one processor, will cause the at least
one processor to perform a method of monitoring Software
development and project flow in the insurance industry using
user stories, the method comprising:

receiving, via a communication interface, via one or more
networks, information included in communications
among a product owner, at least one developer, and a
project manager;

identifying, by a processor, from the monitored communi
cation a plurality of user stories for completion during
the development;

assigning, by a processor, each of the plurality of user
stories a priority and a value determined by the effort

US 9,134,999 B2
17

required to complete the respective user story and stor
ing the user story and associated priority and value in the
memory as a product backlog:

at the processor, accessing the memory to read the product
backlog and associated priorities and values and select
ing at least one user story and associated priority and
value from the product backlog for building based on the
associated priority and value;

calibrating, at the processor, a difference in the value of
each of the plurality of user stories by comparing a
centralized position of each of the plurality of user sto
ries and an associated Fibonacci position, and iteratively
adjusting the Fibonacci position of each of the plurality
of user stories based on the difference between the cen
tralized position and the value as compared to a median
value until the difference is below a threshold;

upon completion of any of the user stories included in the
backlog, updating, by the processor, the product backlog
in the memory; and

at the processor, iterating the selecting and updating based
on the monitored communication that evidences that

10

15

18
user stories are being completed and that additional
story points are selected for inclusion in the backlog; and

displaying, on a display device, the backlog as selected by
the processor from the product backlog and the status of
the software development and project flow based on user
stories remaining in the product backlog as compared to
the user stories completed from the product backlog.

19. The computer-readable medium of claim 18 wherein
the associated priority of each of the plurality of user stories
is updated based on feedback from the completed user stories
in the backlog.

20. The computer-readable medium of claim 18 wherein
one of the plurality of user stories provides a basis for the
respective priority associated with each of the other of the
plurality of user stories.

21. The computer-readable medium of claim 18 wherein at
least one of the priorities associated with the plurality of user
stories in the product backlog is modified.

k k k k k

